Search results for "Signaling"

showing 10 items of 1125 documents

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Retrograde neurotrophic signaling in rat retinal ganglion cells is transmitted via the ERK5 but not the ERK1/2 pathway.

2014

Purpose Neurotrophic deprivation is considered an important event in glaucomatous retinal ganglion cell (RGC) death. However, the mitogen-activated protein kinase (MAPK) pathway transmitting axonal neurotrophic signals in RGC has not been identified. We investigated the involvement of ERK5 and ERK1/2 in retrograde axonal neurotrophic signaling in rats. Methods Adult Sprague-Dawley rats were used. Retinal immunostaining for ERK5 and MEK5 was performed. Levels of total and phosphorylated ERK5 and ERK1/2 were analyzed in retinal lysate by quantitative Western blotting. The effects of age, brain-derived neurotrophic factor (BDNF) stimulation at RGC soma (intravitreal injection) or axon ending (…

MaleRetinal Ganglion Cellsmedicine.medical_specialtyAgingSuperior ColliculiMAP Kinase Signaling SystemBlotting WesternRetinal ganglionRetinaRats Sprague-Dawley03 medical and health sciences0302 clinical medicineNeurotrophic factorsInternal medicinemedicineAnimalsAxonPhosphorylationMitogen-Activated Protein Kinase 7030304 developmental biologyBrain-derived neurotrophic factorMitogen-Activated Protein Kinase 10303 health sciencesRetinaMitogen-Activated Protein Kinase 3biologyChemistryBrain-Derived Neurotrophic FactorBrainAnatomyRatsmedicine.anatomical_structureEndocrinologynervous systemRetinal ganglion cellTrk receptorOptic Nerve InjuriesIntravitreal Injectionsbiology.proteinsense organsNeuroglia030217 neurology & neurosurgeryNeurotrophinInvestigative ophthalmologyvisual science
researchProduct

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

2017

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

enterovirussignalingendosytoosiepidermal growth factor receptor (EGFR)pilaantuminen
researchProduct

Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

2015

Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …

Genome instabilityRedox signalingRNA UntranslatedEpigenetic regulation of neurogenesisDNA RepairHuR mRNA-binding protein in the 3′-untranslated regionClinical BiochemistryHDAC histone deacetylaseReview ArticleAP-1 activator protein 1BiochemistryApe-1 apurinic/apyrimidinic endonuclease 1GPx-1 glutathione peroxidase-1Epigenesis GeneticHistonesTrx thioredoxinPHD prolylhydroxylaseBER base excision repairlcsh:QH301-705.5HO-1 heme oxygenase-1EpigenomicsGeneticsRegulation of gene expressionNox member of the NADPH oxidase familylcsh:R5-920JmjC Jumonji C domain-containing histone demethylasesHIF-1α hypoxia inducible factor-1α5-hmC 5-hydroxymethylcytosineddc:Cell biologyMMP matrix metalloproteinaseGrx glutaredoxinGAPDH glyceraldehyde-3-phosphate dehydrogenaseNrf2 nuclear factor erythroid related factor 2DNA methylationEpigeneticslcsh:Medicine (General)Oxidation-ReductionSignal Transduction5-mC 5-methylcytosineDNA repairDNA damageNF-κB nuclear factor-κBBiologyGenomic InstabilityRNS reactive nitrogen speciesROS reactive oxygen speciesNER nucleotide excision repairSOD superoxide dismutaseOxyR transcription factor (hydrogen peroxide-inducible genes activator)HumansEpigeneticsOrganic ChemistryPETN pentaerithrityl tetranitrateGene regulationOxidative StressDNMT DNA methyltransferaseGene Expression Regulationlcsh:Biology (General)AREs AU-rich elementsHAT histone acetyltransferaseKeap1 kelch-like ECH-associated protein 1BiomarkersCOPD chronic obstructive pulmonary disorderDNA DamageRedox Biology
researchProduct

CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC

2019

Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…

0301 basic medicineMAPK/ERK pathwayCancer ResearchLung NeoplasmsDrug ResistanceDrug resistanceTransgenicMiceChemokine receptor0302 clinical medicineNeoplasmsCarcinoma Non-Small-Cell LungReceptorsMedicineNon-Small-Cell LungCXCRReceptorLungbeta-ArrestinsCancerEGFR inhibitorsTumorKinaseLung CancerErbB ReceptorsOncology5.1 Pharmaceuticals030220 oncology & carcinogenesisDevelopment of treatments and therapeutic interventionsTyrosine kinaseEpithelial-Mesenchymal TransitionMAP Kinase Signaling SystemOncology and CarcinogenesisMice TransgenicArticleCell LineExperimental03 medical and health sciencesClinical ResearchCell Line TumorAnimalsHumansOncology & CarcinogenesisProtein Kinase InhibitorsReceptors CXCRbusiness.industryCarcinomaNeoplasms Experimentalrespiratory tract diseases030104 developmental biologyProtein kinase domainDrug Resistance NeoplasmMutationCancer researchNeoplasmbusinessCancer Research
researchProduct

More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation.

2021

ABSTRACT Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners …

0301 basic medicineα2δ subunitsBiophysicschemistry.chemical_elementReviewNeurotransmissionCalciumBiochemistrySynaptic TransmissionCalcium in biology03 medical and health sciencesvoltage-induced calcium releasealternative splicing0302 clinical medicinevoltage-gated calcium channelsCavβ subunitsVGCC auxiliary subunitsCalcium SignalingIon channelNeuronssynaptogenesisVoltage-dependent calcium channelChemistryRyanodine receptorDepolarization030104 developmental biologyIon channelsCalciumgene regulationNeuroscience030217 neurology & neurosurgeryIntracellularResearch ArticleChannels (Austin, Tex.)
researchProduct

De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.

2013

Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…

Binding SitesMolecular StructureProtein ConformationIntracellular Signaling Peptides and ProteinsArticlesProtein Serine-Threonine KinasesCrystallography X-RayMAP Kinase Kinase KinasesImmediate-Early ProteinsCSK Tyrosine-Protein KinaseMolecular Docking SimulationSmall Molecule Librariessrc-Family KinasesDrug DesignComputer SimulationProtein Kinase InhibitorsACS chemical biology
researchProduct

On Cancer Cell Cycle and Universal Apoptosis Parameters Signaling Unravelled In Silico

2010

Here, cell cycle in higher eukaryotes and their molecular networks signals both in G1/S and G2/M transitions are in silico replicated. Systems control theory is employed to design multi-nestled digital layers to simulate protein-to- protein activation and inhibition in the cancer cell cycle dynamics in presence of damaged genome. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage; p21mRNA/cyclin-CDK complex; CDK/CDC25/wee1/SKP2/APC/CKI and apoptosis target genes system) paved the way for unravelling the participants and their by-products having the task to execute (or not) cell death. The results of the proposed cell digital multi-layers…

Programmed cell deathWee1Cell signalingCell cycle checkpointbiologyCdc25Cyclin-dependent kinaseIn silicobiology.proteinCell cycleCell biologyThe Open Conference Proceedings Journal
researchProduct

Variants of CARD15 are associated with an aggressive clinical course of Crohn's Disease. An IG-IBD Study

2005

Three major variants of the CARD15 gene confer susceptibility to Crohn's disease (CD). Whether or not these variants correlate with specific clinical features of the disease is under evaluation.We investigated the possible association of CARD15 variants with specific clinical characteristics, including the occurrence of anti-Saccharomyces cerevisiae antibodies (ASCA) and antineutrophil cytoplasmic antibodies (ANCA), in a large cohort of inflammatory bowel disease (IBD) patients and their unaffected relatives.Three hundred and sixteen CD patients (156 with positive family history), 408 ulcerative colitis (UC) patients (206 with positive family history), 588 unaffected relatives, and 205 unre…

AdultMaleNod2 Signaling Adaptor Proteindigestive systemCrohn DiseaseGene FrequencyHumansMedicineSettore MED/12 - GastroenterologiaCrohn's diseaseHepatologybiologyCrohn diseasebusiness.industryIntracellular Signaling Peptides and ProteinsGastroenterologyClinical courseMiddle Agedmedicine.diseasedigestive system diseasesPhenotypeItalyCase-Control StudiesMutationImmunologybiology.proteinColitis UlcerativeFemaleAntibodybusinessFollow-Up Studies
researchProduct

Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

2017

IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced …

0301 basic medicineRuxolitinibruxolitinibPhysiologySystems biologyRegulatorBiologyPharmacology: Biochemistry biophysics & molecular biology [F05] [Life sciences]lcsh:Physiology03 medical and health sciencesMediatoracute phase responsePhysiology (medical)medicineSOCS3primary hepatocytes: Biochimie biophysique & biologie moléculaire [F05] [Sciences du vivant]Original ResearchIL-6lcsh:QP1-981Acute-phase proteinmathematical modelingJAK-STAT signaling pathwayCell biology030104 developmental biologySignal transductionmedicine.drugFrontiers in Physiology
researchProduct