Search results for "Sobolev Space"

showing 10 items of 164 documents

Regularity of the inverse of a Sobolev homeomorphism in space

2006

Let Ω ⊂ Rn be open. Given a homeomorphism of finite distortion with |Df| in the Lorentz space Ln−1, 1 (Ω), we show that and f−1 has finite distortion. A class of counterexamples demonstrating sharpness of the results is constructed.

Sobolev spaceDistortion (mathematics)Lorentz spaceGeneral MathematicsMathematical analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBesov spaceInterpolation spaceSpace (mathematics)HomeomorphismMathematicsSobolev inequalityProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Removable sets for Sobolev spaces

1999

We study removable sets for the Sobolev space W1,p. We show that removability for sets lying in a hyperplane is essentially determined by their thickness measured in terms of a concept of p-porosity.

Sobolev spaceHyperplaneGeneral MathematicsMathematical analysisSobolev spaces for planar domainsMathematicsSobolev inequalityArkiv för Matematik
researchProduct

Invertibility of Sobolev mappings under minimal hypotheses

2010

Abstract We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant W 1 , n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.

Sobolev spaceInverse function theoremDiscrete mathematicsDistortion functionDifferential inclusionIntegrable systemApplied MathematicsLocal homeomorphismDifferentiable functionHomeomorphismMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
researchProduct

Maximal potentials, maximal singular integrals, and the spherical maximal function

2014

We introduce a notion of maximal potentials and we prove that they form bounded operators from L to the homogeneous Sobolev space Ẇ 1,p for all n/(n − 1) < p < n. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.

Sobolev spaceMathematics::Functional AnalysisHomogeneousApplied MathematicsGeneral MathematicsBounded functionMathematical analysisMathematics::Analysis of PDEsMaximal operatorMaximal functionSingular integralMathematicsSobolev inequalityProceedings of the American Mathematical Society
researchProduct

Regularity of the Inverse of a Sobolev Homeomorphism

2011

We give necessary and sufficient conditions for the inverse ofa Sobolev homeomorphism to be a Sobolev homeomorphism and conditions under which the inverse is of bounded variation.

Sobolev spaceMathematics::Functional AnalysisMathematics::Dynamical SystemsBounded variationMathematical analysisMathematics::Analysis of PDEsMathematics::General TopologyInverseMathematics::Geometric TopologyHomeomorphismMathematicsSobolev inequalityProceedings of the International Congress of Mathematicians 2010 (ICM 2010)
researchProduct

Generalized dimension estimates for images of porous sets under monotone Sobolev mappings

2014

We give an essentially sharp estimate in terms of generalized Hausdorff measures for images of porous sets under monotone Sobolev mappings, satisfying suitable Orlicz-Sobolev conditions.

Sobolev spaceMathematics::Functional AnalysisMonotone polygonDimension (vector space)Applied MathematicsGeneral MathematicsMathematical analysisMathematics::Analysis of PDEsSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

Continuity of the maximal operator in Sobolev spaces

2006

We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces W 1,p (R n ), 1 < p < ∞. As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMaximal operatorMaximal functionDerivativeSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

2003

The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsWork (thermodynamics)General MathematicsMathematical analysisMaximal operatorMaximal functionMathematicsBulletin of the London Mathematical Society
researchProduct

First-Order Calculus on Metric Measure Spaces

2020

In this chapter we develop a first-order differential structure on general metric measure spaces. First of all, the key notion of cotangent module is obtained by combining the Sobolev calculus (discussed in Chap. 2) with the theory of normed modules (described in Chap. 3). The elements of the cotangent module L2(T∗X), which are defined and studied in Sect. 4.1, provide a convenient abstraction of the concept of ‘1-form on a Riemannian manifold’.

Sobolev spaceMetric (mathematics)CalculusKey (cryptography)Trigonometric functionsDifferential structureRiemannian manifoldMathematics::Symplectic GeometryMeasure (mathematics)MathematicsAbstraction (mathematics)
researchProduct

Penalty Function Methods for the Numerical Solution of Nonlinear Obstacle Problems with Finite Elements

2008

A class of penalty function methods for the solution of nonlinear variational inequalities with obstacles ⩽ 0 fur alle v ⩾ ψ in the Sobolev space W1, p (ω) is studied. The (nonlinear) penalty equations are solved by finite element techniques; the order of convergence of this procedure which depends on the regularity of the solution as well as on the finite elements used is investigated. Eine Klasse von Penalty-Methoden zur Losung nichtlinearer Variationsungleichungen mit Hindernisnebenbedingungen ⩽ 0 fur alle v ⩾ ψ im Sobolev Raum W1, p (ω) wird untersucht. Die (nichtlinearen) Penalty-Gleichungen werden mit Hilfe der Finite Elemente Methode gelost; die Konvergenzordnung dieses Verfahrens, w…

Sobolev spaceNonlinear systemRate of convergenceApplied MathematicsObstacleVariational inequalityComputational MechanicsApplied mathematicsPenalty methodFinite element methodMathematicsMathematical physicsZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
researchProduct