Search results for "Solar cells"

showing 10 items of 178 documents

Influence of Nitrogen Doping on Device Operation for TiO 2 -Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

2016

International audience; Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO 2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal o…

Materials scienceGeneral Chemical EngineeringKineticsta221Oxide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylcsh:Chemistrychemistry.chemical_compoundX-ray photoelectron spectroscopyphoto-responseTiO2General Materials Sciencespiro-OMeTADDopantta114business.industryDopingsolid-state dye-sensitized solar cells; TiO<sub>2</sub>; nitrogen doping; photo-physics; photo-response; spiro-OMeTADnitrogen doping[CHIM.MATE]Chemical Sciences/Material chemistrysolid-state dye-sensitized solar cells021001 nanoscience & nanotechnology0104 chemical sciencesDye-sensitized solar celllcsh:QD1-999chemistrySpiro-OMeTADElectrodeOptoelectronicsCharge carrier0210 nano-technologybusinessphoto-physicsTiO 2
researchProduct

External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells

2020

The instability exhibited by perovskite solar cells when exposed to the environment under illumination is one of the major obstacles for the entry of perovskite technology in the photovoltaic market. In this work, we use the external quantum efficiency (EQE) technique to study the photoinduced degradation of two types of solar cells having CH3NH3PbI3 as an absorber layer: one deposited by spin coating with an n-i-p architecture and the other deposited by evaporation with an inverted p-i-n structure. We also study the effect of different encapsulants to protect the cells against atmospheric agents. We find that EQE provides information regarding the areas of the cell most susceptible to degr…

Materials scienceInfraredGeneral Physics and Astronomy02 engineering and technology01 natural sciencesInstability//purl.org/becyt/ford/1 [https]EQE0103 physical sciencesMaterialsCèl·lules fotoelèctriques010302 applied physicsSpin coatingSTABILITYbusiness.industryPhotovoltaic systemSOLAR CELLS//purl.org/becyt/ford/1.3 [https]021001 nanoscience & nanotechnologyPEROVSKITES//purl.org/becyt/ford/2 [https]OptoelectronicsQuantum efficiencyAbsorbent material0210 nano-technologybusiness//purl.org/becyt/ford/2.5 [https]
researchProduct

Recombination in Perovskite Solar Cells

2017

Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH3NH3PbI3 solar cells, including the light intensity dependence of the open circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain bounda…

Materials scienceLetterEFFICIENCYMETHYLAMMONIUM LEAD IODIDEMIGRATIONEnergy Engineering and Power TechnologyNanotechnology02 engineering and technologyQuantum dot solar cell010402 general chemistryFILMS01 natural sciencesIonMaterials ChemistryORGANOMETAL TRIHALIDE PEROVSKITEVOLTAGEHYSTERESISPerovskite (structure)Theory of solar cellsRenewable Energy Sustainability and the EnvironmentHybrid solar cellELECTRICAL-PROPERTIES021001 nanoscience & nanotechnologySURFACE-DEFECTSTRANSPORT0104 chemical sciencesLight intensityFuel TechnologyChemistry (miscellaneous)Chemical physicsGrain boundary0210 nano-technologyRecombinationACS Energy Letters
researchProduct

Colloidal plasmonic back reflectors for light trapping in solar cells.

2014

A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…

Materials scienceMie scatteringPhysics::OpticsReflectionTrapping7. Clean energyThin film devices Colloidal arraySettore ING-INF/01 - ElettronicaColloidal solutionColloidOpticsElectromagnetic simulationThin film solar cells PlasmonsLow temperatureGeneral Materials SciencePlasmonic solar cellThin filmPlasmonPhotocurrentNear infrared spectrabusiness.industrySolar cellCondensed Matter::Soft Condensed MatterSynthesis (chemical)Light trapping structureOptoelectronicsDiffuse reflectanceDiffuse reflectionbusinessNanoscale
researchProduct

Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties

2013

The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…

Materials scienceMie scatteringSilver nanoparticlePhysics::OpticsPlasmonBioengineeringNanotechnologyScattering efficiency02 engineering and technologyStatistical parameterSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energySilver nanoparticlelaw.inventionlawSurface coverage0103 physical sciencesSolar cellGeneral Materials ScienceDewettingElectrical and Electronic EngineeringThin filmPlasmon010302 applied physicsScatteringSurface plasmon resonance SilverMechanical EngineeringSolar cellStructural and optical propertieGeneral ChemistryLocalized surface plasmon resonance021001 nanoscience & nanotechnologyOptical propertiePhase diagramMechanics of MaterialsThin-film solar cells Nanoparticle0210 nano-technologySilver nanoparticle (NPs)Localized surface plasmon
researchProduct

Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers

2015

Abstract Among all the photovoltaic technologies developed so far, dye-sensitized solar cells are considered as a promising alternative to the expensive and environmentally unfriendly crystalline silicon-based solar cells. One of the possible strategies employed to increase their photovoltaic efficiency is to reduce the charge recombination at the cell conductive substrate through the use of a compact blocking layer. In this paper, we report on the fabrication and characterization of dye-sensitized solar cells employing niobium pentoxide (Nb 2 O 5 ) thin film blocking layer deposited through the pulsed laser deposition technique on conductive substrates. The careful selection of the optimal…

Materials scienceOpen circuit voltage decaySubstrate (electronics)Dye-sensitized solar cellsSettore ING-INF/01 - ElettronicaPulsed laser depositionBlocking layer; Dye-sensitized solar cells; Electrochemical impedance spectroscopy; Niobium pentoxide; Open circuit voltage decay; Pulsed laser deposition; Electronic Optical and Magnetic Materials; Materials Chemistry; 2506; Metals and Alloys; 2506; Surfaces Coatings and Films; Surfaces and InterfacesCoatings and Filmschemistry.chemical_compoundElectronicMaterials ChemistryOptical and Magnetic MaterialsCrystalline siliconThin filmNiobium pentoxidepulsed laser depositionbusiness.industryOpen-circuit voltagePhotovoltaic systemMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSurfacesDye-sensitized Solar CellDye-sensitized solar cellniobium pentoxidechemistryblocking layerOptoelectronics2506businessElectrochemical impedance spectroscopyThin Solid Films
researchProduct

Donor/Acceptor Heterojunction Organic Solar Cells

2020

The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp

Materials scienceOrganic solar cellComputer Networks and Communicationslcsh:TK7800-836002 engineering and technology010402 general chemistrySettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionorganic photovoltaicexciton blocking layerdonor/acceptor heterojuntionlawElectrical and Electronic Engineeringbusiness.industryOpen-circuit voltagelcsh:ElectronicsEnergy conversion efficiencyorganic solar cellsHeterojunction021001 nanoscience & nanotechnologyAcceptor0104 chemical sciencesHalogen lampHardware and ArchitectureControl and Systems EngineeringOrganic solar celllifetime and degradationSignal ProcessingOptoelectronicsQuantum efficiencyorganic photovoltaics0210 nano-technologybusinessShort circuitElectronics
researchProduct

Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells

2017

International audience; Advances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has be…

Materials scienceOrganic solar cellEnergy Engineering and Power Technologypower-conversion efficiency02 engineering and technologydonor materials010402 general chemistryporphyrins7. Clean energy01 natural sciencesPolymer solar cellbulk heterojunction solar cellsphotoinduced electron-transferchemistry.chemical_compoundBODIPYElectrical and Electronic Engineeringsmall-moleculelow-bandgap polymerbusiness.industryfield-effect transistors[CHIM.MATE]Chemical Sciences/Material chemistryHybrid solar cellpi-conjugated copolymersd-a021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialsphotovoltaic propertieschemistryopen-circuit voltage[ CHIM.MATE ] Chemical Sciences/Material chemistryOptoelectronicsorganic photovoltaicsBODIPY0210 nano-technologybusiness
researchProduct

Parametrical study of multilayer structures for CIGS solar cells

2014

In this paper, a numerical analysis of relevant electrical parameters of multilayer structures for CIGS-based solar cells was carried out, employing the simulation software wxAMPS. In particular, we have focused on thin film cells having a ZnO:Al/ZnO/CdS/CIGS structure with a Molybdenum back contact. The aim of this work is to establish good theoretical reference values for an ongoing experimental activity, where our technology of choice is the single-step electrodeposition. In detail, we have analyzed how the main electrical properties change with the bang gap and the thickness of the absorber layer, for such a type of solar cell structure. Our results show that both efficiency and fill fa…

Materials scienceOrganic solar cellbusiness.industryBand gapSolar cellSettore ING-INF/02 - Campi ElettromagneticiHybrid solar cellCIGSQuantum dot solar cellSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciCopper indium gallium selenide solar cellsSettore ING-INF/01 - ElettronicaPolymer solar celllaw.inventionthin-filmlawSolar cellElectronic engineeringOptoelectronicsPlasmonic solar cellSettore CHIM/07 - Fondamenti Chimici Delle Tecnologiesingle-step electrodeposition.business
researchProduct

Synergies and compromises between charge and energy transfers in three-component organic solar cells

2020

In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a b…

Materials scienceOrganic solar cellbusiness.industryEnergy conversion efficiencyGeneral Physics and AstronomyHeterojunctionCharge (physics)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAcceptor0104 chemical scienceslaw.inventionActive layerPlanarlawSolar cellOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessorganic solar cells transparent heterojunctionPhysical Chemistry Chemical Physics
researchProduct