Search results for "Solar"

showing 10 items of 2301 documents

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

A space weather tool for identifying eruptive active regions

2019

Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…

010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsFOS: Physical sciencesSpace weather01 natural sciences3rd-NDASSolar coronal mass ejections0103 physical sciencesRegional sciencemedia_common.cataloged_instanceQB AstronomyEuropean union010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesmedia_commonQBPhysicsHorizon (archaeology)European researchAstronomy and AstrophysicsSolar active region magnetic fieldsSolar active regionsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Atmospheric and Instrumental Effects on the Fluorescence Remote Sensing Retrieval

2018

Accurately disentangling the tiny Solar–Induced Chlorophyll Fluorescence (SIF) from canopy reflected solar irradiance by using passive remote sensing techniques is always challenging. Regardless the scale at which SIF is measured, i.e., proximal sensing, airborne or satellite level; instrumental and atmospheric effects must be accounted for and compensated as part of the SIF retrieval strategy. Regarding the instrumental effects, the use of very high spectral resolution spectrometers makes mandatory an accurate characterization of the Instrument Spectral Response Function (ISRF); and – in the case of imager spectrometers – an accurate characterization of the full instrument response in the …

010504 meteorology & atmospheric sciencesSpectrometerAtmospheric correctionSolar irradiance01 natural sciences010309 optics0103 physical sciencesRadianceEnvironmental scienceSatelliteSpectral resolutionAbsorption (electromagnetic radiation)Image resolution0105 earth and related environmental sciencesRemote sensingIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Star-disk interaction in classical T Tauri stars revealed using wavelet analysis

2016

The extension of the corona of classical T Tauri stars (CTTS) is under discussion. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from Hydrodynamic modeling of X-ray flares observed in CTTS confirming the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevent the stellar corona to extent beyond the co-rotation radius, while others simply are not confident with the methods used to derive loop lengths. We use independent procedures to determine t…

010504 meteorology & atmospheric sciencesStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsContext (language use)Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOrion NebulaDifferential rotationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsCoronal seismologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Stellar atmosphereAstronomy and AstrophysicsCoronaT Tauri starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

New Pre-Main Sequence Candidates in the Taurus-Auriga Star Forming Region

2007

Aims. We have studied the X-ray source population of the Taurus Molecular Cloud (TMC) to search for new members of the Taurus-Auriga star forming region. Methods. Candidate members have been selected among the X-ray sources detected in 24 fields of the XMM-Newton Extended Survey of the Taurus Molecular Cloud, having an IR counterpart in the 2MASS catalog, based on color-magnitude and color-color diagrams. Their X-ray spectral properties have been compared with those of known members and other X-ray sources in the same fields but without a NIR counterpart. A search for flare-like variability in the time series of all new candidates and the analysis of the X-ray spectra of the brightest candi…

010504 meteorology & atmospheric sciencesStellar massAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxy : open clusters and associations : individual : Taurus Molecular Cloud01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]stars : activitystars : pre-main-sequence0103 physical sciencesstars : luminosity function mass functionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsLuminosity functionAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsAURIGAMolecular cloudAstronomyAstronomy and AstrophysicsLight curveStarsStar clusterSpace and Planetary Science[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]X-rays : starAstrophysics::Earth and Planetary Astrophysicsstars : coronaeOpen cluster
researchProduct

Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA

2019

The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in the Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assem…

010504 meteorology & atmospheric sciencesSun: activity Sun: corona Sun: UV radiation Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysicsElectron01 natural sciences0103 physical sciencesmedicineAstrophysics::Solar and Stellar AstrophysicsIris (anatomy)010303 astronomy & astrophysicsSpectrographSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsAstronomy and AstrophysicsCoronal loopThermal conductionmedicine.anatomical_structureAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceCoronal planePhysics::Space PhysicsCathode rayAstrophysics::Earth and Planetary Astrophysics
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85

2016

X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesflares; X-rayslaw.inventionPhotometry (optics)law0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencescoronaePhysicseducation.field_of_studystars: protostarsStar formationactivityAstronomy and AstrophysicsLight curveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

Deep X-ray view of the Class I YSO Elias 29 with XMM-Newton and NuSTAR

2019

[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at $\sim6.4$ keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the $\approx 0.15--0.5$ keV range. These values make unrealistic a simple model with a centrally illuminated disk and sug…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyStar formationAstronomy and AstrophysicsCoronaAccretion (astrophysics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomenastars:activity–stars:coronae–stars:pre-mainsequence–stars:formation–stars:flareEquivalent widthFlare
researchProduct