Search results for "Speech processing"

showing 10 items of 210 documents

An Open-set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

2020

The problem of training with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning (DL) algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high number of samples. In the image domain, typical FSL applications include those related to face recognition. In the audio domain, music fraud or speaker recognition can be clearly benefited from FSL methods. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, usin…

FOS: Computer and information sciencesComputer Science - Machine LearningSound (cs.SD)sound processingaudio datasetmachine listeningUNESCO::CIENCIAS TECNOLÓGICASComputer Science - SoundMachine Learning (cs.LG)classificationArtificial IntelligenceAudio and Speech Processing (eess.AS)Signal ProcessingFOS: Electrical engineering electronic engineering information engineeringfew-shot learningopen-set recognitionComputer Vision and Pattern RecognitionSoftwareElectrical Engineering and Systems Science - Audio and Speech Processing
researchProduct

Cyclic Complexity of Words

2014

We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equ…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R15Characterization (mathematics)[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsConjugacy class[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatorics0101 mathematics[MATH]Mathematics [math]Discrete Mathematics and CombinatoricMathematicsDiscrete mathematicsFactor complexity010102 general mathematicsSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Sturmian wordsCyclic complexity factor complexity Sturmian words minimal forbidden factorInfimum and supremumToeplitz matrixComputational Theory and Mathematics010201 computation theory & mathematicsCyclic complexityBounded functionComplexity functionCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Quantum, stochastic, and pseudo stochastic languages with few states

2014

Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all th…

FOS: Computer and information sciencesFINITE AUTOMATAClass (set theory)Unary operationFormal Languages and Automata Theory (cs.FL)QUANTUM FINITE AUTOMATACOMPUTATIONAL MODELBINARY ALPHABETSFOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputer Science::Computational ComplexityPROBABILISTIC FINITE AUTOMATAREAL NUMBERUNARY LANGUAGESQuantum finite automataCUT-POINTMathematicsReal numberDiscrete mathematicsQuantum PhysicsFinite-state machineGENERALIZED FINITE AUTOMATAComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)STOCHASTIC SYSTEMSAutomatonSTOCHASTIC LANGUAGESMathematics::LogicProbabilistic automatonComputer Science::Programming LanguagesQUANTUM THEORYUncountable setQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryGENERALIZED FINITE AUTOMATON
researchProduct

On generalized Lyndon words

2018

Abstract A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincreasing factorization of generalized Lyndon words. We give new characterizations of the first and the last factor in this factorization as well as new characterization of generalized Lyndon words. We also give more specific results on two special cases: the classical one and the one arising from the alternating lexicographical order.

FOS: Computer and information sciencesGeneral Computer ScienceDiscrete Mathematics (cs.DM)Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)68R15Characterization (mathematics)Lexicographical orderTheoretical Computer ScienceLyndon wordsCombinatoricsFactorizationPosition (vector)Free monoidFOS: MathematicsOrder (group theory)Mathematics - CombinatoricsCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct

On the Lie complexity of Sturmian words

2022

Bell and Shallit recently introduced the Lie complexity of an infinite word $s$ as the function counting for each length the number of conjugacy classes of words whose elements are all factors of $s$. They proved, using algebraic techniques, that the Lie complexity is bounded above by the first difference of the factor complexity plus one; hence, it is uniformly bounded for words with linear factor complexity, and, in particular, it is at most 2 for Sturmian words, which are precisely the words with factor complexity $n+1$ for every $n$. In this note, we provide an elementary combinatorial proof of the result of Bell and Shallit and give an exact formula for the Lie complexity of any Sturmi…

FOS: Computer and information sciencesGeneral Computer ScienceSettore INF/01 - InformaticaDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)G.2.168R15Lie complexityTheoretical Computer ScienceLie complexity Sturmian wordFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

On the Structure of Bispecial Sturmian Words

2013

A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian wo…

FOS: Computer and information sciencesGeneral Computer ScienceSpecial factorDiscrete Mathematics (cs.DM)Computer Networks and CommunicationsApproximations of πFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryEnumerative formula68R15Characterization (mathematics)Minimal forbidden wordTheoretical Computer ScienceCombinatoricsComputer Science::Discrete MathematicsEuclidean geometryPhysics::Atomic PhysicsMathematicsChristoffel symbolsApplied MathematicsPalindromeSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Combinatorics on wordsComputational Theory and MathematicsWord (group theory)Computer Science::Formal Languages and Automata TheoryChristoffel wordComputer Science - Discrete Mathematics
researchProduct

An LP-based hyperparameter optimization model for language modeling

2018

In order to find hyperparameters for a machine learning model, algorithms such as grid search or random search are used over the space of possible values of the models hyperparameters. These search algorithms opt the solution that minimizes a specific cost function. In language models, perplexity is one of the most popular cost functions. In this study, we propose a fractional nonlinear programming model that finds the optimal perplexity value. The special structure of the model allows us to approximate it by a linear programming model that can be solved using the well-known simplex algorithm. To the best of our knowledge, this is the first attempt to use optimization techniques to find per…

FOS: Computer and information sciencesMathematical optimizationPerplexityLinear programmingComputer scienceMachine Learning (stat.ML)02 engineering and technology010501 environmental sciences01 natural sciencesTheoretical Computer ScienceNonlinear programmingMachine Learning (cs.LG)Random searchSimplex algorithmSearch algorithmStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringFOS: MathematicsMathematics - Optimization and Control0105 earth and related environmental sciencesHyperparameterComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - LearningHardware and ArchitectureOptimization and Control (math.OC)Hyperparameter optimization020201 artificial intelligence & image processingLanguage modelSoftwareInformation Systems
researchProduct

Pattern statistics in faro words and permutations

2021

We study the distribution and the popularity of some patterns in $k$-ary faro words, i.e. words over the alphabet $\{1, 2, \ldots, k\}$ obtained by interlacing the letters of two nondecreasing words of lengths differing by at most one. We present a bijection between these words and dispersed Dyck paths (i.e. Motzkin paths with all level steps on the $x$-axis) with a given number of peaks. We show how the bijection maps statistics of consecutive patterns of faro words into linear combinations of other pattern statistics on paths. Then, we deduce enumerative results by providing multivariate generating functions for the distribution and the popularity of patterns of length at most three. Fina…

FOS: Computer and information sciencesMultivariate statisticsDistribution (number theory)Discrete Mathematics (cs.DM)Interlacing0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsStatistics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]05A05 (Primary) 05A15 05A19 68R15 (Secondary)0202 electrical engineering electronic engineering information engineeringFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsLinear combinationMathematicsDiscrete mathematicsMathematics::Combinatorics020206 networking & telecommunicationsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Derangement010201 computation theory & mathematicsBijectionCombinatorics (math.CO)AlphabetComputer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

On prefix normal words and prefix normal forms

2016

A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…

FOS: Computer and information sciencesPrefix codePrefix normal wordPre-necklaceDiscrete Mathematics (cs.DM)General Computer ScienceFormal Languages and Automata Theory (cs.FL)Binary numberComputer Science - Formal Languages and Automata TheoryContext (language use)Binary languageLyndon words0102 computer and information sciences02 engineering and technologyPrefix grammarprefix normal formsKraft's inequalityCharacterization (mathematics)Lyndon word01 natural sciencesPrefix normal formenumerationTheoretical Computer ScienceFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - CombinatoricsMathematicsDiscrete mathematicsprefix normal words prefix normal forms binary languages binary jumbled pattern matching pre-necklaces Lyndon words enumerationbinary jumbled pattern matchingSettore INF/01 - InformaticaComputer Science (all)pre-necklacesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)prefix normal wordsPrefix010201 computation theory & mathematics020201 artificial intelligence & image processingCombinatorics (math.CO)binary languagesComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science - Discrete MathematicsTheoretical Computer Science
researchProduct

Open and Closed Prefixes of Sturmian Words

2013

A word is closed if it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard Sturmian words. We prove that every standard Sturmian word, after swapping its first letter, can be written as an infinite product of squares of reversed standard words.

FOS: Computer and information sciencesSequenceFibonacci numberDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordStructure (category theory)Sturmian wordInfinite productComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - Formal Languages and Automata Theory68R15CombinatoricsPrefixComputer Science::Discrete MathematicsCombinatorics on words Sturmian wordFOS: MathematicsMathematics - CombinatoricsClosed wordsCombinatorics (math.CO)SuffixWord (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct