Search results for "Sphere"

showing 10 items of 2121 documents

2019

Abstract. This study uses the synergy of multi-resolution soil moisture (SM) satellite estimates from the Soil Moisture Ocean Salinity (SMOS) mission, a dense network of ground-based SM measurements, and a soil–vegetation–atmosphere transfer (SVAT) model, SURFEX (externalized surface), module ISBA (interactions between soil, biosphere and atmosphere), to examine the benefits of the SMOS level 4 (SMOS-L4) version 3.0, or “all weather” high-resolution soil moisture disaggregated product (SMOS-L43.0; ∼1 km). The added value compared to SMOS level 3 (SMOS-L3; ∼25 km) and SMOS level 2 (SMOS-L2; ∼15 km) is investigated. In situ SM observations over the Valencia anchor station (VAS; SMOS calibrati…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyFlood forecastingInitializationBiosphere02 engineering and technologyVegetation01 natural sciences020801 environmental engineeringClimatologySpatial ecologyEnvironmental scienceSatelliteSpatial variabilityWater content0105 earth and related environmental sciencesHydrology and Earth System Sciences
researchProduct

The WISE 2000 and 2001 Field Experiments in Support of the SMOS Mission:Sea Surface L-Band Brightness Temperature Observations and Their Application …

2004

Camps, Adriano ... et al.-- 20 pages, 16 figures, 3 tables

010504 meteorology & atmospheric sciences0211 other engineering and technologiesWind02 engineering and technologySea stateAtmospheric sciences01 natural sciencesOceanographic techniquesWind waveSurface roughnessEmissivitySeawater14. Life underwaterElectrical and Electronic EngineeringRadiometry[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingPhysics[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereRadiometerFoamsOcean wavesRemote sensingSea surface temperature13. Climate actionBrightness temperatureGeneral Earth and Planetary SciencesSMOS MissionSignificant wave height
researchProduct

Spectroscopic tools for remote sensing of greenhouse gases CH4, CF4 and SF6

2003

International audience; Highly symmetrical molecules such as CH4, CF4 or SF6 are known to be atmospheric pollutants and greenhouse gases. High-resolution spectroscopy in the infrared is particularly suitable for the monitoring of gas concentration and radiative transfers in the earth's atmosphere. This technique requires extensive theoretical studies for the modeling of the spectra of such molecules (positions, intensities and shapes of absorption lines). Here, we have developed powerful tools for the analysis and the simulation of absorption spectra of highly symmetrical molecules. These tools have been implemented in the spherical top data system (STDS) and highly-spherical top data syste…

010504 meteorology & atmospheric sciencesAbsorption spectroscopy[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Infrared01 natural sciencesSpectral lineAtmosphereSoftware[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesRadiative transferEnvironmental ChemistryClimate changeSpectroscopy0105 earth and related environmental sciencesRemote sensingCH4010304 chemical physicsbusiness.industryChemistryCF4Molecular spectroscopyGreenhouse gases13. Climate actionGreenhouse gasbusinessSimulationSF6
researchProduct

Partitioning of nitrogen during melting and recycling in subduction zones and the evolution of atmospheric nitrogen

2019

Abstract The subduction of sediment connects the surface nitrogen cycle to that of the deep Earth. To understand the evolution of nitrogen in the atmosphere, the behavior of nitrogen during the subduction and melting of subducted sediments has to be estimated. This study presents high-pressure experimental measurements of the partitioning of nitrogen during the melting of sediments at sub-arc depths. For quantitative analysis of nitrogen in minerals and glasses, we calibrated the electron probe micro-analyzer on synthetic ammonium feldspar to measure nitrogen concentrations as low as 500 μg g−1. Nitrogen abundances in melt and mica are used together with mass balance calculations to determi…

010504 meteorology & atmospheric sciencesAnalytical chemistrychemistry.chemical_element[SDU.STU]Sciences of the Universe [physics]/Earth Sciences010502 geochemistry & geophysicsFeldspar01 natural sciencesMantle (geology)Geochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistrySubduction zonesNitrogen cycle0105 earth and related environmental sciencesMantle metasomatismSubductionGeologyNitrogenPartition coefficientchemistry13. Climate action[SDU]Sciences of the Universe [physics]visual_art[SDE]Environmental Sciencesvisual_art.visual_art_mediumSlabAtmosphere evolutionMicaGeologyNitrogen cycling
researchProduct

A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

2020

The time and location of the 1,598 verified and reconstructed elves, used for the analysis showcased in this paper, are publicly available on the website of the Pierre Auger Observatory (https://www.auger.org/ index.php/science/data). We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. We acknowledge Robert Marshall for providing one of the most advanced elve simulations to the public, a key tool in understanding the elves observed by the Pierre Auger Observatory. The successful installation, commissioning, and operation of the Pierre Auger Ob…

010504 meteorology & atmospheric sciencesAstronomyField of view010502 geochemistry & geophysics01 natural sciences7. Clean energyAugerlcsh:QB1-991ObservatoryultravioletStormddc:550UHE Cosmic Raystime resolutionCosmic-ray observatoryPhysicslcsh:QE1-996.5astro-ph.GeologyAugerwidth [beam]IonosphereField of viewGeologylcsh:AstronomyUHE [cosmic radiation]Environmental Science (miscellaneous)horizonLightningddc:530High Energy PhysicsIonosphereCosmic-ray observatory0105 earth and related environmental sciencesfluorescence [detector]backgroundFísicaAstronomyStormsensitivityLightningopticslcsh:GeologyElves UV fluorescence detectorsThunderstorm13. Climate actionExperimental High Energy PhysicsnetworkThunderstormGeneral Earth and Planetary SciencesElvesObservatory
researchProduct

Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …

2011

International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…

010504 meteorology & atmospheric sciencesComputer scienceGaussian0211 other engineering and technologiesSoil ScienceCANOPY BIOPHYSICAL CHARACTERISTICS02 engineering and technologyNEURAL NETWORK01 natural sciencesTransfer functionsymbols.namesakeAtmospheric radiative transfer codesRadiative transferRange (statistics)Sensitivity (control systems)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingArtificial neural networkGeologySigmoid functionRELATION SOL-PLANTE-ATMOSPHEREMODEL INVERSION[SDE]Environmental SciencessymbolsINDICE FOLIAIRE
researchProduct

Controlled time integration for the numerical simulation of meteor radar reflections

2016

We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …

010504 meteorology & atmospheric sciencesComputer scienceMETEORPLASMATIC OBJECTSRADAR REFLECTIONS01 natural sciencesplasmatic objectslaw.inventionINTEGRAL EQUATIONSlawRadar010303 astronomy & astrophysicsSpectroscopyEARTH ATMOSPHEREvolume integral equationRadiationPLASMANUMERICAL MODELSMathematical analysisFinite differenceNUMERICAL METHODMETEORSAtomic and Molecular Physics and OpticsCALCULATIONSControllabilityDISCRETE EXTERIOR CALCULUSAstrophysics::Earth and Planetary AstrophysicsMAGNETOPLASMADiscretizationRADAR REFLECTIONTIME DOMAIN ANALYSISVOLUME INTEGRAL EQUATIONdiscrete exterior calculusELECTROMAGNETIC SCATTERINGOpticsFINITE DIFFERENCE TIME DOMAIN METHOD0103 physical sciencesSCATTERINGTime domainmeteorsNUMERICAL METHODS0105 earth and related environmental sciencesta113ta114Computer simulationbusiness.industryta111Finite-difference time-domain methodRADARDiscrete exterior calculuselectromagnetic scatteringradar reflectionsELECTROMAGNETIC METHODmeteoritbusinessJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

The effect of rheological approximations in 3-D numerical simulations of subduction and collision

2018

Abstract Subduction and collision zones evolve differently from one another due to different rheological properties, different amounts of regional isostatic compensation, and the different mechanisms by which forces are applied to the convergent plates. The rheology of mantle and lithosphere is known to have the largest influence on the dynamics of subduction and continental collision. However, previous 3-D geodynamic models of subduction/collision processes have used various rheological approximations, making their results difficult to compare, since there is no clear understanding on the extent of these approximations on the dynamics. Here, we test the effect of rheological approximations…

010504 meteorology & atmospheric sciencesContinental collisionSubductionMechanics010502 geochemistry & geophysics01 natural sciencesMantle (geology)Physics::GeophysicsCondensed Matter::Soft Condensed MatterGeophysicsRheologyLithosphereTransition zoneSlabConvergent boundaryGeology0105 earth and related environmental sciencesEarth-Surface ProcessesTectonophysics
researchProduct

Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

2017

S. Jafarzadeh et. al.

010504 meteorology & atmospheric sciencesExtrapolationFOS: Physical scienceschromosphere [Sun]Field strengthAstrophysicsDense forest01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatorySun: chromosphereAstronomy and AstrophysicsMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Morphological Properties of Slender Ca ${\rm{II}}$ H Fibrils Observed by Sunrise II

2017

R. Gafeira et. al.

010504 meteorology & atmospheric sciencesFOS: Physical scienceschromosphere [Sun]AstrophysicsFibrilCurvature01 natural sciencesSponge spiculeObservatory0103 physical sciencesHigh spatial resolutionSunriseTechniques: imaging spectroscopySun: magnetic fields010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)Physicsimaging spectroscopy [Techniques]Sun: chromosphereAstronomy and Astrophysicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThe Astrophysical Journal Supplement Series
researchProduct