Search results for "Spintronics"

showing 10 items of 231 documents

Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits

2017

Abstract In the past decades, POMs have been used as minimal models in Molecular Magnetism, since they are a convenient playing ground to study fundamental phenomena such as anisotropic magnetic exchange and electron transfer. Now they have jumped to the stage of the rational design of single-ion magnets and are being considered as test subjects for simple experiments in Single-Molecule Spintronics and Molecular Quantum Computing. This chapter contains an overview of recent results that demonstrate the potential of POMs in these emerging fields.

PhysicsSpintronicsMagnetismNanotechnology02 engineering and technologyMinimal models010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences3. Good health0104 chemical sciencesMagnetic exchangeMagnetQubit0210 nano-technologySpin (physics)Quantum computer
researchProduct

Symmetry and Topology in Antiferromagnetic Spintronics

2018

Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding Neel spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into …

PhysicsSuperconductivityField (physics)SpintronicsHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyTopology01 natural sciencesSymmetry (physics)Condensed Matter::Materials ScienceHall effect0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyTopology (chemistry)
researchProduct

Electric field controllable magnetic coupling of localized spins mediated by itinerant electrons: a toy model

2017

In this paper, we propose a toy model to describe the magnetic coupling between the localized spins mediated by the itinerant electron in partially delocalized mixed-valence (MV) systems. This minimal model takes into account the key interactions that are common for all such systems, namely, electron transfer in the valence-delocalized moiety and magnetic exchange between the localized spins and the delocalized electrons. The proposed descriptive model is exactly solvable which allows us to qualitatively and quantitatively discuss the main features of the whole class of partially delocalized MV systems. In the case of relatively strong exchange coupling, the combined action of these two int…

PhysicsToy modelSpinsCondensed matter physicsSpintronicsGeneral Physics and Astronomy02 engineering and technologyElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesInductive coupling0104 chemical sciencesDelocalized electronsymbols.namesakeElectric fieldQuantum mechanicssymbolsPhysical and Theoretical Chemistry0210 nano-technologyHamiltonian (quantum mechanics)Physical Chemistry Chemical Physics
researchProduct

Introduction to Spintronics

2015

Spintronics was born in 1988 with the discovery of GMR provided simultaneously by A. Fert and P. Grunberg and rewarded in 2007 with the Nobel Prize in Physics. This field has since been largely exploited on the market, for example it has been at the base of every hard disk read head. Spintronics field is extremely active and interesting from both a fundamental point of view and for technological applications. Currently, with the aim at new functionalities, there is an increased activity from materials research perspective to understand and develop spintronics devices using materials with new properties like carbon nanotubes, graphene, topological insulators and molecules. This chapter will …

PhysicsTunnel magnetoresistanceSpintronicsSpin polarizationMagnetoresistanceFerromagnetismGraphenelawTopological insulatorEngineering physicsQuantum tunnellinglaw.invention
researchProduct

Mapováni spinů povrchových a bulkových Rashba stavů v tenkých vrstvách feroelektrického α-GeTe(111)

2015

Rozbíjení inverzní symetrie ve fereeleRashba efekt; Fotoemisse; DFTktrickém polovodiči způsobuje děleni stavů, tzv Rashba efekt. V tomto článku ukazujeme kompletně mapování spinové polarizace těchto Rashba stavů za pomoci spinovo rozlišené fotoemisse. The breaking of bulk inversion symmetry in ferroelectric semiconductors causes a Rashba-type spin splitting of electronic bulk bands. This is shown by a comprehensive mapping of the spin polarization of the electronic bands in ferroelectric α- GeTe(111) films using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10 000 data points. The experiment reveals an opposite…

Point reflectionFOS: Physical sciences02 engineering and technologyDFT01 natural sciencesCondensed Matter::Materials ScienceElectric field0103 physical sciencesRashba efectTexture (crystalline)010306 general physicsControlling collective statesSpin-½PhysicsCondensed Matter - Materials ScienceSpin polarizationCondensed matter physicsSpintronicsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyHelicityFerroelectricityRashba efekt0210 nano-technologyphotoemissionfotoemise
researchProduct

Hybrid quantum anomalous Hall effect at graphene-oxide interfaces

2021

Interfaces are ubiquitous in materials science, and in devices in particular. As device dimensions are constantly shrinking, understanding the physical properties emerging at interfaces is crucial to exploit them for applications, here for spintronics. Using first-principles techniques and Monte Carlo simulations, we investigate the mutual magnetic interaction at the interface between graphene and an antiferromagnetic semiconductor BaMnO3. We find that graphene deeply affects the magnetic state of the substrate, down to several layers below the interface, by inducing an overall magnetic softening, and switching the in-plane magnetic ordering from antiferromagnetic to ferromagnetic. The grap…

Political science0103 physical sciencesddc:530Topological insulators02 engineering and technologySpintronics021001 nanoscience & nanotechnology010306 general physics0210 nano-technology01 natural sciencesHumanities
researchProduct

Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching

2021

Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, orbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt in…

QC1-999FOS: Physical sciencesGeneral Physics and AstronomyApplied Physics (physics.app-ph)AstrophysicsMagnetizationHall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530Spin (physics)CouplingPhysicsCondensed Matter - Materials ScienceCondensed matter physicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsMaterials Science (cond-mat.mtrl-sci)Physics - Applied PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQB460-466FerromagnetismSpin Hall effectCondensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary AstrophysicsCurrent (fluid)
researchProduct

Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions

2020

Electrical control of spins at the nanoscale offers significant architectural advantages in spintronics, because electric fields can be confined over shorter length scales than magnetic fields1–5. Thus, recent demonstrations of electric-field sensitivities in molecular spin materials6–8 are tantalizing, raising the viability of the quantum analogues of macroscopic magneto-electric devices9–15. However, the electric-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin–electric couplings. Here we show that one path is to identify an energy scale in the spin spectrum that is associated with a structural degree of freedom with…

Quantum decoherenceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin (physics)MaterialsPhysicsChemical Physics (physics.chem-ph)Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpintronicsSpinsQuàntums Teoria dels021001 nanoscience & nanotechnologyNanomagnet0104 chemical sciencesQuantum technologyDipoleQubit0210 nano-technologyQuantum Physics (quant-ph)
researchProduct

Magnetometry of buried layers—Linear magnetic dichroism and spin detection in angular resolved hard X-ray photoelectron spectroscopy

2012

Abstract The electronic properties of buried magnetic nano-layers were studied using the linear magnetic dichroism in the angular distribution of photoemitted Fe, Co, and Mn 2p electrons from a CoFe–Ir78Mn22 multi-layered sample. The buried layers were probed using hard X-ray photoelectron spectroscopy, HAXPES, at the undulator beamline P09 of the 3rd generation storage ring PETRA III. The results demonstrate that this magnetometry technique can be used as a sensitive element specific probe for magnetic properties suitable for application to buried ferromagnetic and antiferromagnetic magnetic materials and multilayered spintronics devices. Using the same instrument, spin-resolved Fe 2p HAXP…

RadiationMaterials scienceSpintronicsMagnetometerAnalytical chemistryElectronUndulatorDichroismCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionCondensed Matter::Materials ScienceX-ray photoelectron spectroscopyFerromagnetismlawAntiferromagnetismPhysical and Theoretical ChemistrySpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy

2018

Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Eve…

SciencePhysicsHigh Energy Physics::PhenomenologyQSpintronicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectArticleSurfacesinterfaces and thin filmsFerromagnetismlcsh:QCondensed Matter::Strongly Correlated Electronsddc:530lcsh:Science
researchProduct