Search results for "Spintronics"

showing 10 items of 231 documents

Elektrónová a pásová štruktúra CuMnAs študovaná optickou a fotoemissinou spektroskopiou

2017

Tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confi…

DiffractionCondensed Matter - Materials ScienceMaterials scienceSpintronicsCondensed matter physicsPhotoemission spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesspintronics DFT photoemission optical properties CuMnAs02 engineering and technologyCrystal structureElectronic structure021001 nanoscience & nanotechnology01 natural sciences3. Good healthTetragonal crystal systemCondensed Matter::Materials ScienceSpintronika DFT fotoemissia optické vlastnosti CuMnAs0103 physical sciencesPrecession electron diffraction010306 general physics0210 nano-technologyElectronic band structure
researchProduct

Impact of electromagnetic fields and heat on spin transport signals in Y3Fe5O12

2019

Exploring new strategies to perform magnon logic is a key requirement for the further development of magnon-based spintronics. In this paper, we realize a three-terminal magnon transport device to study the possibility of manipulating magnonic spin information transfer in a magnetic insulator via localized magnetic fields and heat generation. The device comprises two parallel Pt wires as well as a Cu center wire that are deposited on the ferrimagnetic insulator ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$. While the Pt wires act as spin current injector and detector, the Cu wire is used to create local magnetostatic fields and additional heat, which impact both the magnetic configur…

Electromagnetic fieldPhysicsSpintronicsCondensed matter physicsCondensed Matter::OtherMagnonInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials ScienceFerrimagnetismHeat generationExcited state0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Electric control of the spin Hall effect by intervalley transitions

2013

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…

Electronic structureSpin currentsSpin Hall effectElectronElectronic structureCrystal symmetrySpin-polarized electronsElectron populationGallium arsenideQuantum mechanicsGeneral Materials ScienceSemiconducting galliumStrength of materials0912 Materials EngineeringRoom temperatureSpin-½Intervalley transitionPhysicsCouplingElectromotive forceCondensed matter physicsSpintronicsMechanical EngineeringMaterial systemsGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectric controlHeavy metalsMechanics of MaterialsSpin Hall effectSpin-orbit couplingsMaterial propertiesNature Materials
researchProduct

Spin Pumping and Torque Statistics in the Quantum Noise Limit

2016

We analyze the statistics of charge and energy currents and spin torque in a metallic nanomagnet coupled to a large magnetic metal via a tunnel contact. We derive a Keldysh action for the tunnel barrier, describing the stochastic currents in the presence of a magnetization precessing with the rate $\Omega$. In contrast to some earlier approaches, we include the geometric phases that affect the counting statistics. We illustrate the use of the action by deriving spintronic fluctuation relations, the quantum limit of pumped current noise, and consider the fluctuations in two specific cases: the situation with a stable precession of magnetization driven by spin transfer torque, and the torque-…

FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyMagnetization01 natural sciencesspin pumpingQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesStatistics010306 general physicsMagnetic anisotropySpin-½PhysicsSpin pumpingStochastic systemsCondensed Matter - Mesoscale and Nanoscale Physicsta114SpintronicsCondensed matter physicsQuantum limitQuantum noiseSpin-transfer torqueCharge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyNanomagnetTorquequantum noise limit0210 nano-technologytorque statisticsEnergy (signal processing)Physical Review Letters
researchProduct

Quantum computing with molecular spin systems

2009

Molecular spintronics promises to combine the flexibility offered by synthetic chemistry with the advantages of an electronics which is based on the electron spin rather than its charge degree of freedom. Here, we review recent work on the description of transport across molecular spin systems and on a proposal for an all-electrical scheme for the implementation of a fundamental two-qubit gate in a certain class of molecular systems.

Flexibility (engineering)Condensed matter physicsSpintronicsChemistrySpin engineeringCharge (physics)General ChemistryMolecular systemsTheoretical physicsComputer Science::Emerging TechnologiesMaterials ChemistryElectronicsSpin (physics)Quantum computerJ. Mater. Chem.
researchProduct

Why Bring Organic and Molecular Electronics to Spintronics

2015

Organic spintronics field is an emerging field at the frontier between organic chemistry and spintronics. Exploiting the peculiarity of these two fields, it combines the flexibility, versatility and low production cost of organic materials with the nonvolatility, spin degree of freedom and beyond CMOS capabilities offered by spintronics. Before starting the discussion on the organic spintronics field, in this chapter will be provided a brief introduction on organic and molecular electronics and the specificities of molecules. This will help to understand the advantages that molecular systems can bring to spintronics.

Flexibility (engineering)EngineeringBeyond CMOSSpintronicsbusiness.industryProduction costMolecular electronicsNanotechnologyMolecular systemsbusiness
researchProduct

Phonon-driven spin-Floquet magneto-valleytronics in MoS2

2018

AbstractTwo-dimensional materials equipped with strong spin–orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magn…

Floquet theoryFloquet theoryPhononSciencePoint reflectionGeneral Physics and Astronomy02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials ScienceMagnetization0103 physical sciencesValleytronicslcsh:Science010306 general physicsPhysicsMultidisciplinaryCondensed matter physicsSpinsSpintronicsQGeneral Chemistry2D materialsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology3. Good healthCondensed Matter::Strongly Correlated Electronslcsh:Q0210 nano-technologyMirror symmetryNature Communications
researchProduct

Electronic and magnetic properties of VOCl/FeOCl antiferromagnetic heterobilayers

2021

We study the electronic properties of the heterobilayer of vanadium and iron oxychlorides, VOCl and FeOCl, two layered air stable van der Waals insulating oxides with different types of antiferromagnetic order in bulk: VOCl monolayers are ferromagnetic (FM) whereas the FeOCl monolayers are antiferromagnetic (AF). We use density functional theory (DFT) calculations, with Hubbard correction that is found to be needed to describe correctly the insulating nature of these compounds. We compute the magnetic anisotropy and propose a spin model Hamiltonian. Our calculations show that interlayer coupling in weak and ferromagnetic so that magnetic order of the monolayers is preserved in the heterobil…

Física de la Materia CondensadaFeOClFOS: Physical sciences02 engineering and technology01 natural sciencesLayered magnetic oxidesCondensed Matter::Materials SciencePolitical science0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)2D materialsab-initioGeneral Materials Science010306 general physicsDensity-functional theory VOClCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringHigh educationGeneral ChemistrySpintronics021001 nanoscience & nanotechnologyCondensed Matter Physics3. Good healthMechanics of MaterialsChristian ministryCondensed Matter::Strongly Correlated Electrons0210 nano-technologyHumanities
researchProduct

Room-temperature spin-orbit torque in NiMnSb

2015

Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electric…

General Physics and AstronomyFOS: Physical sciencesNanotechnology02 engineering and technology01 natural sciencesCrystalCondensed Matter::Materials Science0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Antiferromagnetism010306 general physicsPhysicsspintronicsCondensed Matter - Materials ScienceMagnetization dynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsCondensed matter physicsSpin polarizationMaterials Science (cond-mat.mtrl-sci)Magnetic semiconductor021001 nanoscience & nanotechnologyFerromagnetic resonanceFerromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologymagnetic properties and materials
researchProduct

State of the Art in Organic and Molecular Spintronics

2015

Organic spintronics field was born in 2002 with the pioneer work presented by the group of C. Taliani and A. V. Dediu. While molecules are easily tailored by chemical synthesis compared to inorganic materials, organics were initially seen as the ultimate media for spintronics devices due to their expected very long spin lifetime. Only very recently it was also unveiled that radically new spintronics functionalities, unavailable with conventional inorganic materials, could stem from the interface between ferromagnetic (FM) and molecular materials, giving rise to the so-called “spinterface” field. This chapter will present a general state of the art in organic and molecular spintronics fields…

General stateMaterials scienceSpintronicsFerromagnetismField (physics)Spin polarizationNanotechnologyInorganic materialsMolecular materialsSpin (physics)
researchProduct