Search results for "Splitting"
showing 10 items of 220 documents
Photoelectrochemical characterization of anatase-rutile mixed TiO2 nanosponges
2016
This work studies the influence of using hydrodynamic conditions during anodization on the morphology and electrochemical properties of anatase/rutile mixed TiO2 nanotubes (Reynolds number, Re = 0) and nanosponges (Re > 0). To this purpose different techniques were used, such as: microscopy techniques (Field-Emission Scanning Electron Microscope, FE-SEM, and Confocal Laser-Raman Spectroscopy), Electrochemical Impedance Spectroscopy (EIS), Mott Schottky (MS) analysis and photoelectrochemical water splitting tests. This investigation demonstrates that the morphology of TiO2 nanostructures may be greatly affected due to the hydrodynamic conditions and it can be adjusted in order to increase th…
Effect of Reynolds number and lithium cation insertion on titanium anodization
2016
This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tu…
Effect of Reynolds number on TiO2 nanosponges doped with Li+ cations
2018
[EN] Anatase TiO2 nanosponges have been synthesized by anodization of Ti, and Li+ cations have been inserted in these nanostructures. The influence of hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during anodization has been studied. Li-Doped TiO2 nanosponges were characterized by field emission scanning electron microscopy (FE-SEM), Raman confocal microscopy, electrochemical impedance spectroscopy (EIS) and Mott¿Schottky analysis (M¿S). The photoelectrochemical performance and resistance to photocorrosion were also measured. Li¿TiO2 nanosponges proved to be better photocatalysts for water splitting than Li¿TiO2 nanotubes. Moreover, the photoelectrochemical behavior of the L…
Ab initiomodeling of sulphur doped TiO2nanotubular photocatalyst for water-splitting hydrogen generation
2012
In order to construct an efficient visible-light-driven TiO2 photocatalyst for water splitting applications, one has to perform improvements of its electronic structure. In this theoretical study we consider single-walled anatase TiO2 nanotubes having following morphologies: (101) 3-layered wall with chirality indexes (n,0) and (n,n), (101) 6-layered wall with (n,0) and (0,n), (001) 6-layered wall with (n,0) and (0,n), and (001) 9-layered wall with (n,0) and (0,n). The latter configuration occurs to be the most energetically stable, due to possessing negative strain energy. In our study the most stable 9-layered anatase (001) (0,n) nanotube has been doped with sulphur. According to obtained…
Original Approach to Synthesize TiO2/ZnO Hybrid Nanosponges Used as Photoanodes for Photoelectrochemical Applications
2021
[EN] In the present work, TiO2/ZnO hybrid nanosponges have been synthesized for the first time. First, TiO2 nanosponges were obtained by anodization under hydrodynamic conditions in a glycerol/water/NH4F electrolyte. Next, in order to achieve the anatase phase of TiO2 and improve its photocatalytic behaviour, the samples were annealed at 450 degrees C for 1 h. Once the TiO2 nanosponges were synthesized, TiO2/ZnO hybrid nanosponges were obtained by electrodeposition of ZnO on TiO2 nanosponges using different temperatures, times, and concentrations of zinc nitrate (Zn(NO3)(2)). TiO2/ZnO hybrid nanosponges were used as photoanodes in photoelectrochemical water splitting tests. The results indi…
Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications?
2017
[EN] Different TiO2 nanostructures, nanotubes and nanosponges, were obtained by anodization of Ti under stagnant and hydrodynamic conditions. Samples were doped with Li+ before and after annealing at 450 degrees C during 1 h. The nanostructures were characterized by different microscopy techniques: Field Emission Scanning Electron Microscopy (FE-SEM) and Raman Confocal Laser Microscopy. Additionally, Incident Photon-to-electron Conversion Efficiency (IPCE), photoelectrochemical water splitting and stability measurements were also performed. According to the results, TiO2 nanostructures doped before annealing present the worst photocurrent response, even if compared with undoped samples. On …
INTERACTIONS OF ORGANOTIN(IV) HALIDES WITH REDUCED GLUTATHIONE IN AQUEOUS-SOLUTION
1993
Abstract Glutathione (GSH) is a compound extremely common among many living organisms in which it plays a fundamental role in the processes of detoxification. Also, organotin(IV) derivatives are more and more commonly used in technological processes or as antitumor drugs. So it seemed interesting to investigate the possible interactions between GSH and organotin compounds in water. Particularly, it has been studied because of its role in the organic radicals linked to the tin center on the stoichiometry and the structure of the adducts. Information was obtained following the reaction between Me n SnCl 4-n (n = 1 to 3) and GSH by Mossbauer and NMR spectroscopies on the assumption that change…
The interaction of organotins with native DNA
1992
The compounds R2SnCl2 and R3SnCl (RMe, Et, nBu, nOct, Ph, in ethanol solution) as well as the aqueous species [Me2Sn(OH2)n]2+ and [Me3Sn(OH2)2]+, react with aqueous native DNA, yielding solid phases. According to the pointcharge model treatment of the 119Sn Mossbauer parameter nuclear quadrupole splitting, trans-octahedral R2Sn(O2PXY)2, and trigonalbipyramidal R3Sn(O2PXY), (RMe, Et, nBu), would occur in the pellets, the tin atoms being coordinated by phosphodiester groups of the nucleic acid. The precipitates from Ph2SnIV would consist of the DNA complex as well as of the Ph2SnIV distannoxane obtained by hydrolysis of the reactant, whilst nOct2SnCl2, nOct3SnCl and Ph3SnCl would mainly yield…
Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions
2021
[EN] The influence of three annealing atmospheres (air, nitrogen and argon) and the use of controlled hydrodynamic conditions (from 0 to 5000 rpm) on morphological, structural, chemical and photoelectrochemical properties of TiO2 nanotubes have been evaluated. For this purpose, different characterization techniques have been used: Field Emission Scanning Electron Microscopy, Raman Confocal Laser Spectroscopy, X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, Incident Photon-to-electron Conversion Efficiency measurements, ultraviolet-visible absorption spectra, Mott-Schottky analysis and photoelectrochemical water splitting tests. According to the results, it can be concluded that both hy…
Current‐voltage curves of bipolar membranes
1992
Bipolar membranes consist of a layered ion‐exchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor p‐n devices as both of them present current‐voltage curves exhibiting similar rectification properties. In this article, we present some current‐voltage curves obtained for different bipolar membranes at several temperatures. The results can be interpreted in terms of a simple model for ion transport and field‐enhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane int…