Search results for "Statistical classification"
showing 10 items of 67 documents
Classification theory for anequilibrium phase transitions
1993
The paper introduces a classification of phase transitions in which each transition is characterized through its generalized order and a slowly varying function. This characterization is shown to be applicable in statistical mechanics as well as in thermodynamics albeit for different mathematical reasons. By introducing the block ensemble limit the statistical classification is based on the theory of stable laws from probability theory. The block ensemble limit combines scaling limit and thermodynamic limit. The thermodynamic classification on the other hand is based on generalizing Ehrenfest's traditional classification scheme. Both schemes imply the validity of scaling at phase transition…
Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms.
2021
Plant Ecological Unit’s (PEUs) are the abstraction of vegetation communities that occur on a site which similarly respond to management actions and natural disturbances. Identification and monitoring of PEUs in a heterogeneous landscape is the most difficult task in medium resolution satellite images datasets. The main objective of this study is to compare pixel-based classification versus object-based classification for accurately classifying PEUs with four selected different algorithms across heterogeneous rangelands in Central Zagros, Iran. We used images of Landsat-8 OLI that were pan-sharpened to 15 m to classify four PEU classes based on a random dataset collected in the field (40%). …
Molecular Clustering of Phenylurea Herbicides: Comparison with Sulphonylureas, Pesticides and Persistent Organic Pollutants
2014
Chromatographic retention times of phenylurea herbicides are modelled by structure–property relationships. Properties are hydration free energy and dipole. Bioplastic evolution is an evolutionary perspective conjugating the effect of acquired characters and relations that emerge among evolutionary indeterminacy, morphological determination and natural selection principles. Classification algorithms are proposed based on information entropy and production. Phenylureas are classified by Cl2, O2 and N2 presence; their different behaviour depends on the number of Cl atoms. When applying procedures to moderate-sized sets, excessive results appear compatible with data and suffer a combinatorial e…
Random forests, a novel approach for discrimination of fish populations using parasites as biological tags.
2008
Due to the complexity of host-parasite relationships, discrimination between fish populations using parasites as biological tags is difficult. This study introduces, to our knowledge for the first time, random forests (RF) as a new modelling technique in the application of parasite community data as biological markers for population assignment of fish. This novel approach is applied to a dataset with a complex structure comprising 763 parasite infracommunities in population samples of Atlantic cod, Gadus morhua, from the spawning/feeding areas in five regions in the North East Atlantic (Baltic, Celtic, Irish and North seas and Icelandic waters). The learning behaviour of RF is evaluated in …
Feature selection on a dataset of protein families: from exploratory data analysis to statistical variable importance
2016
Proteins are characterized by several typologies of features (structural, geometrical, energy). Most of these features are expected to be similar within a protein family. We are interested to detect which features can identify proteins that belong to a family, as well as to define the boundaries among families. Some features are redundant: they could generate noise in identifying which variables are essential as a fingerprint and, consequently, if they are related or not to a function of a protein family. We defined an original approach to analyze protein features for defining their relationships and peculiarities within protein families. A multistep approach has been mainly performed in R …
QSAR models for tyrosinase inhibitory activity description applying modern statistical classification techniques: A comparative study
2010
Abstract Cluster analysis (CA), Linear and Quadratic Discriminant Analysis (L(Q)DA), Binary Logistic Regression (BLR) and Classification Tree (CT) are applied on two datasets for description of tyrosinase inhibitory activity from molecular structures. The first set included 701 tyrosinase inhibitors (TI) that are used for performance of inhibitory and non-inhibitory activity and the second one is for potency estimation of active compounds. 2D TOMOCOMD-CARDD atom-based quadratic indices are computed as molecular descriptors. CA is used to “rational” design of training (TS) and prediction set (PS) but it shows of not being adequate as classification technique. On the first data, the overall a…
<strong>Predicting Proteasome Inhibition using Atomic Weighted Vector and Machine Learning</strong>
2018
Ubiquitin/Proteasome System (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. Through the concerted actions of a series of enzymes, proteins are marked for proteasomal degradation by being linked to the polypeptide co-factor, ubiquitin. The UPS participates in a wide array of biological functions such as antigen presentation, regulation of gene transcription and the cell cycle, and activation of NF-κB. Some researchers have applied QSAR method and machine learning in the study of proteasome inhibition (EC50(µmol/L)), such as: the analysis of proteasome inhibition prediction, in the prediction of multi-target inhibitors of UPP and in the prediction of p…
Periodic Classification of Local Anaesthetics (Procaine Analogues)
2006
Algorithms for classification are proposed based on criteria (information entropyand its production). The feasibility of replacing a given anaesthetic by similar ones in thecomposition of a complex drug is studied. Some local anaesthetics currently in use areclassified using characteristic chemical properties of different portions of their molecules.Many classification algorithms are based on information entropy. When applying theseprocedures to sets of moderate size, an excessive number of results appear compatible withdata, and this number suffers a combinatorial explosion. However, after the equipartitionconjecture, one has a selection criterion between different variants resulting fromc…
Toward Self-Supervised Feature Learning for Online Diagnosis of Multiple Faults in Electric Powertrains
2021
This article proposes a novel online fault diagnosis scheme for industrial powertrains without using historical faulty or labeled training data. The proposed method combines a one-class support vector machine (SVM) based anomaly detection and supervised convolutional neural network (CNN) algorithms to online detect multiple faults and fault severities under variable speeds and loads. The one-class SVM algorithm is to derive a score for defining faults or health classes in the first stage, and the resulting health classes are used as the training data for the CNN-based classifier in the second stage. Within this framework, the self-supervised learning of the proposed CNN algorithm allows the…
Introducing Pseudo-Singularity Points for Efficient Fingerprints Classification and Recognition
2010
Fingerprint classification and matching are two key issues in automatic fingerprint recognition. Generally, fingerprint recognition is based on a set of relevant local characteristics, such as ridge ending and bifurcation (minutiae). Fingerprint classification is based on fingerprint global features, such as core and delta singularity points. Unfortunately, singularity points are not always present in a fingerprint image: the acquisition process is not ideal, so that the fingerprint is broken, or the fingerprint belongs to the arch class. In the above cases, pseudo-singularity-points will be detected and extracted to make possible fingerprint classification and matching. As result, fingerpr…