Search results for "Stochastic Proce"
showing 10 items of 349 documents
Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.
2018
Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…
Suprathreshold stochastic resonance behind cancer
2018
Noise in gene expression is pervasive and, in some cases, even fulfills a functional role. Cancer cell populations exploit noise to increase heterogeneity as a defense against therapies. What lies behind this picture is a phenomenon of stochastic resonance led by the collective, rather than by individual cells.
Stochastic sampling effects favor manual over digital contact tracing.
2020
Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into accou…
A Novel Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines
2018
Being capable of online learning in unknown stochastic environments, Tsetlin Automata (TA) have gained considerable interest. As a model of biological systems, teams of TA have been used for solving complex problems in a decentralized manner, with low computational complexity. For many domains, decentralized problem solving is an advantage, however, also may lead to coordination difficulties and unstable learning. To combat this negative effect, this paper proposes a novel TA coordination scheme designed for learning problems with continuous input and output. By saving and updating the best solution that has been chosen so far, we can avoid having the overall system being led astray by spur…
Estimation of ADME Properties in Drug Discovery: Predicting Caco-2 Cell Permeability Using Atom-Based Stochastic and Non-stochastic Linear Indices
2007
The in vitro determination of the permeability through cultured Caco-2 cells is the most often-used in vitro model for drug absorption. In this report, we use the largest data set of measured P(Caco-2), consisting of 157 structurally diverse compounds. Linear discriminant analysis (LDA) was used to obtain quantitative models that discriminate higher absorption compounds from those with moderate-poorer absorption. The best LDA model has an accuracy of 90.58% and 84.21% for training and test set. The percentage of good correlation, in the virtual screening of 241 drugs with the reported values of the percentage of human intestinal absorption (HIA), was greater than 81%. In addition, multiple …
Initial Enlargement in a Markov chain market model
2011
Enlargement of filtrations is a classical topic in the general theory of stochastic processes. This theory has been applied to stochastic finance in order to analyze models with insider information. In this paper we study initial enlargement in a Markov chain market model, introduced by Norberg. In the enlarged filtration, several things can happen: some of the jumps times can be accessible or predictable, but in the original filtration all the jumps times are totally inaccessible. But even if the jumps times change to accessible or predictable, the insider does not necessarily have arbitrage possibilities.
Surrogate data analysis of sleep electroencephalograms reveals evidence for nonlinearity
1996
We tested the hypothesis of whether sleep electroencephalographic (EEG) signals of different time windows (164 s, 82 s, 41 s and 20.5 s) are in accordance with linear stochastic models. For this purpose we analyzed the all-night sleep electroencephalogram of a healthy subject and corresponding Gaussian-rescaled phase randomized surrogates with a battery of five non-linear measures. The following nonlinear measures were implemented: largest Lyapunov exponent L1, correlation dimension D2, and the Green-Savit measures delta 2, delta 4 and delta 6. The hypothesis of linear stochastic data was rejected with high statistical significance. L1 and D2 yielded the most pronounced effects, while the G…
Quantifying changes in EEG complexity induced by photic stimulation.
2009
Summary Objectives: This study aims to characterize EEG complexity, measured as the prediction error resulting from nonlinear prediction, in healthy humans during photic stimulation. Methods: EEGs were recorded from 15 subjects with eyes closed (EC) and eyes open (EO), during the baseline condition and during stroboscopic photic stimulation (PS) at 5, 10, and 15 Hz. The mean squared prediction error (MSPE) resulting from nearest neighbor local linear prediction was taken as complexity index. Complexity maps were generated interpolating the MSPE index over a schematic scalp representation. Results: Statistical analysis revealed that: i) EEG shows good predictability in all conditions and see…
Uncertainty quantification in simulations of epidemics using polynomial chaos.
2012
Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equa…
A Criterium for the Strict Positivity of the Density of the Law of a Poisson Process
2011
We translate in semigroup theory our result (Leandre, 1990) giving a necessary condition so that the law of a Markov process with jumps could have a strictly positive density. This result express, that we have to jump in a finite number of jumps in a "submersive" way from the starting point to the end point if the density of the jump process is strictly positive in . We use the Malliavin Calculus of Bismut type of (Leandre, (2008;2010)) translated in semi-group theory as a tool, and the interpretation in semi-group theory of some classical results of the stochastic analysis for Poisson process as, for instance, the formula giving the law of a compound Poisson process.