Search results for "Supernova remnant"

showing 10 items of 100 documents

The northwestern ejecta knot in SN 1006

2012

Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with regards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emis…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysicsISM: abundancesSpectral linelaw.inventionlawEjectaISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicISM: abundanceX-rays: ISMSynchrotronMagnetic fieldParticle accelerationSupernovaSpace and Planetary ScienceElectron temperature[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Multiple accelerated particle populations in the Cygnus Loop with Fermi-LAT

2021

The Cygnus Loop (G74.0-8.5) is a very well-known nearby supernova remnant (SNR) in our Galaxy. Thanks to its large size, brightness, and angular offset from the Galactic plane, it has been studied in detail from radio to $\gamma$-ray emission. The $\gamma$ -rays probe the populations of energetic particles and their acceleration mechanisms at low shock speeds. We present an analysis of the $\gamma$-ray emission detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope over 11 years in the region of the Cygnus Loop. We performed detailed morphological and spectral studies of the $\gamma$-ray emission toward the remnant from 100 MeV to 100 GeV and compared it with X-ra…

Astrophysics::High Energy Astrophysical Phenomenabrightnesscosmic radiation: energyFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeV01 natural sciencesGLASTthermalX-raycosmic raysSpitzer Space Telescope0103 physical sciencesultravioletsupernovaRadiative transferopticalcloudcosmic radiation: acceleration010306 general physicsSupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsacceleration of particlesISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cygnus LoopAstronomy and Astrophysicsshock wavesGalactic planeGalaxy13. Climate actionSpace and Planetary Sciencegamma raystatisticsspectralgalaxyAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

ALMA spectral survey of Supernova 1987A – molecular inventory, chemistry, dynamics and explosive nucleosynthesis

2017

We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of…

CIRCUMSTELLAR RINGMetallicityLINE EMISSIONINFRARED WATER-VAPORFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energySpectral lineISM [radio lines]CORE-COLLAPSE SUPERNOVAENucleosynthesis0103 physical sciencesIsotopologueEjectaSupernova remnantLarge Magellanic CloudCARBON-MONOXIDE010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)molecules [ISM]QBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsabundances [ISM]010308 nuclear & particles physicssupernova remnants [ISM]II-P SUPERNOVAEAstronomyindividual: Supernova 1987A [supernovae]NEBULA M 1-92Astronomy and AstrophysicsSupernovaAstrophysics - Solar and Stellar AstrophysicsPhysics and Astronomy13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUDAstrophysics - High Energy Astrophysical PhenomenaMASSIVE STARSSN 1987AMonthly Notices of the Royal Astronomical Society
researchProduct

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

Detailed study of SNR G306.3–0.9 using XMM-Newton and Chandra observations

2016

Aims. We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant (SNR) G306.3-0.9 in detail to obtain constraints on its ionization stage, the progenitor supernova explosion, and the age of the remnant. Methods. We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of G306.3-0.9 in detail. A spatially resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations, available in the archive, were also used to constrain the progenitor supernova and study the environment in which the remnant evol…

Ciencias AstronómicasInfraredCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaISM [Infrared]FOS: Physical sciencesthermal [radiation mechanism]individual objects: SNR G306.3–0.9 [ISM]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line//purl.org/becyt/ford/1 [https]ISM: individual objects: SNR G306.3IonizationISM [X-ray]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]Radio continuum: ISMEjectaSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Infrared: ISM010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicISM: individual objects: SNR G306.3–0.9ISM [Radio continuum]Radiation mechanisms: thermalX-rays: ISMindividual objects: G306.3-0.9 [ISM]Interstellar mediumAstronomíaSupernovathermal [Radiation mechanisms]Space and Planetary ScienceISM; ISM: individual objects: SNR G306.3; ISM: supernova remnants; Radiation mechanisms: thermal; Radio continuum: ISM; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [0.9; Infrared]0.9Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

2014

The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtain…

Ciencias FísicasAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationAstrophysicsSpectral lineISM: cloudIndentationSupernova remnantISM: individual objects (SN 1006)acceleration of particleISM: supernova remnantAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicssupernova remnants X-rays: ISM [ISM]Astronomy and AstrophysicsX-rays: ISMShock (mechanics)Particle accelerationAstronomíaSpace and Planetary Scienceindividual objects: SN 1006 [ISM]clouds [ISM]CIENCIAS NATURALES Y EXACTASFermi Gamma-ray Space Telescope
researchProduct

Carbon Monoxide in the Cold Debris of Supernova 1987A

2013

We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J=13-12, collectively measured from the Atacama Large Millimeter Array (ALMA), the Atacama Pathfinder EXperiment (APEX), and the Herschel Spectral and Photometric Imaging REceiver (SPIRE). Simple models show the lines are emitted from at least 0.01 solar masses of CO at a temperature > 14 K, confined within at most 35% of a spherical volume expanding at ~ 2000 km/s. Moreover, we…

FOS: Physical sciencesAstrophysicsWAVELENGTHindividual (SN1987A) [supernovae]FACILITYEjectaSupernova remnantSolar and Stellar Astrophysics (astro-ph.SR)3-DIMENSIONAL STRUCTURELine (formation)PhysicsSolar massSN-1987AINSTRUMENTsupernova remnants [ISM]Astronomy and AstrophysicsAtacama Large Millimeter ArrayDebrisSupernovaSpireEJECTACASSIOPEIAPhysics and AstronomyAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceREMNANTSN 1987A
researchProduct

HAWC J2227+610 and its association with G106.3+2.7, a new potential Galactic PeVatron

2020

We present the detection of VHE gamma-ray emission above 100 TeV from HAWC J2227+610 with the HAWC observatory. Combining our observations with previously published results by VERITAS, we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.

HAWC - Abteilung HintonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Hydrogen compounds010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLower limitGalaxySpace and Planetary ScienceObservatory0103 physical sciencesSupernova remnantAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

The origin of the X-ray-emitting plasma in the eastern edge of the Cygnus Loop

2010

The Cygnus Loop is interacting with a protrusion of the cavity wall in its eastern edge (the XA region), where the X-ray emission is very bright. The complexity of the environment and the non-linear physical processes of the shock-cloud interaction make the origin of the X-ray emission still not well understood. Our purpose is to understand the physical origin of the X-ray emission in the XA region, addressing, in particular, the role of thermal conduction in the interaction process. We analyzed two XMM-Newton data sets, performing image analysis and spatially resolved spectral analysis on a set of homogeneous regions. We applied a recently developed diagnostic tool to compare spectral anal…

High Energy Astrophysical Phenomena (astro-ph.HE)ISM: cloudAstrophysics::High Energy Astrophysical PhenomenaISM: individual objects: G74.0-8.5FOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsISM: supernova remnantX-rays: ISMISM: individual objects: Cygnus Loop
researchProduct

Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

2011

W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma, and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basi…

High Energy Astrophysical Phenomena (astro-ph.HE)ISM: individual objects: W49BPhysics::Plasma PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaISM: individual objects: G43.3-0.2Astrophysics::Galaxy Astrophysicshydrodynamicmethods: numericalISM: supernova remnants
researchProduct