Search results for "Superposition"
showing 10 items of 139 documents
Dynamics and risk assessment of pesticides in cucumber through field experiments and model simulation
2020
Abstract Pesticides are often applied multiple times during cucumber cultivation in China. In order to obtain the residue concentrations and subsequently human health risk assessment after pesticide multiple applications, plenty of field trials have been conducted, consuming a lot of labor force and funds. The application of kinetic models can address this problem to some extent by predicting the residue values of pesticides in cucumber. In this study, a dynamic model (dynamiCROP) was applied in combination with field experiments to investigate the distribution, translocation, and dissipation after the one-time application of seven pesticides in a cucumber-soil environment. Moreover, the re…
On the measurement of bubble size distribution in gas–liquid contactors via light sheet and image analysis
2010
Abstract Particle image velocimetry techniques coupled with advanced image processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas–liquid mechanically agitated vessels. When trying to analyze image information the problem arises that bubble sizes are generally underestimated, due to the fact that the laser sheet used for lighting the system randomly cuts bubbles over non-diametrical planes, leading to an apparent bubble size distribution even in the ideal case of single sized bubbles. Clearly in the case of bubbles with a size distribution the experimental information obtained is affected by the superposition of effects.…
A new Adaptive and Progressive Image Transmission Approach using Function Superpositions
2010
International audience; We present a novel approach to adaptive and progressive image transmission, based on the decomposition of an image into compositions and superpositions of monovariate functions. The monovariate functions are iteratively constructed and transmitted, one after the other, to progressively reconstruct the original image: the progressive transmission is performed directly in the 1D space of the monovariate functions and independently of any statistical properties of the image. Each monovariate function contains only a fraction of the pixels of the image. Each new transmitted monovariate function adds data to the previously transmitted monovariate functions. After each tra…
A Methodology for the Analysis of Memory Response to Radiation through Bitmap Superposition and Slicing
2015
A methodology is proposed for the statistical analysis of memory radiation test data, with the aim of identifying trends in the single-even upset (SEU) distribution. The treated case study is a 65nm SRAM irradiated with neutrons, protons and heavy-ions.
Entanglement interferometry for precision measurement of atomic scattering properties.
2003
We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or …
Generation of Pair Coherent States in Two-dimensional Trapped Ion
2001
We consider a two-dimensional (2D) trapped ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level of the ion. Due to the coherent superposition of two sub-Rabi oscillations involved in the bimodal vibrations, the Rabi frequency degeneration and offset may occur in this model. This provides the possibility of generating the pair coherent state in the 2D trapped ion.
Three-mode two-boson Jaynes–Cummings model in trapped ions
2006
In this paper, we analyse a two-boson three-mode Jaynes–Cummings model which can be implemented in the context of trapped ions. The symmetries of the Hamiltonian are brought to light and analysed in detail in order to solve the eigenvalue problem. The calculation of the time evolution operator shows the possibility of realizing interesting applications, such as the generation of nonclassical states.
Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments
1998
Several experimental methods feature the potential to distinguish between slow and fast contributions to the non-exponential, ensemble averaged primary response in glass-forming materials. Some of these techniques are based on the selection of subensembles using multi-dimensional nuclear magnetic resonance, optical bleaching, and non-resonant spectral hole burning. Others, such as the time-dependent solvation spectroscopy, measure microscopic responses induced by local perturbations. Using several of these methods it could be demonstrated for various glass-forming materials that the non-exponential relaxation results from a superposition of dynamically distinguishable entities. The experime…
Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness
2020
Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear spring…
Nuclear Spin Relaxation in Viscous Liquids: Relaxation Stretching of Single-Particle Probes
2021
Spin-lattice relaxation rates R1(ω,T), probed via high-field and field-cycling nuclear magnetic resonance (NMR), are used to test the validity of frequency-temperature superposition (FTS) for the reorientation dynamics in viscous liquids. For several liquids, FTS is found to apply so that master curves can be generated. The susceptibility spectra are highly similar to those obtained from depolarized light scattering (DLS) and reveal an excess wing. Where FTS works, two approaches are suggested to access the susceptibility: (i) a plot of deuteron R1(T) vs the spin-spin relaxation rate R2(T) and (ii) a plot of R1(T) vs an independently measured reference time τref(T). Using single-frequency s…