Search results for "Sustainability"

showing 10 items of 3374 documents

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct

Experimental investigation on different rainfall energy harvesting structures

2018

In this paper proposes an experimental comparison between different rainfall harvesting devices and the study of the corresponding electrical rectifying circuit. More in detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. For each of the proposed structure, different waveforms have been acquired and discussed. The processed data have been compared in order to suggest the best choice for the rectifying circuit, from the simplest one to the most endorsed in the technical literature.

010302 applied physicsCantileverComputer scienceRenewable Energy Sustainability and the EnvironmentRainfall energy harvester02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnology01 natural sciencesTechnical literatureBridge (nautical)Settore ING-IND/31 - ElettrotecnicaTransducer0103 physical sciencesAutomotive EngineeringElectronic engineeringWaveform0210 nano-technologyEnergy harvestingPiezoelectric effectHardware_LOGICDESIGN
researchProduct

Maximum Torque Per Ampere control algorithm for low saliency ratio interior permanent magnet synchronous motors

2017

This paper presents an investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs). In particular, this study was carried out on a small-power IPMSM with low salience ratio. Both control algorithms have been implemented in the Matlab/Simulink environment, obtaining promising results.

010302 applied physicsControl algorithmMaximum torque per ampere control algorithmPermanent magnet synchronous motorComputer scienceRenewable Energy Sustainability and the Environment020208 electrical & electronic engineeringEnergy Engineering and Power Technology02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesField oriented control algorithmField orientationSalience (neuroscience)Control theoryMagnet0103 physical sciences0202 electrical engineering electronic engineering information engineeringInterior permanent magnet synchronous machineMATLABAmperecomputerMaximum torquecomputer.programming_language
researchProduct

Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials

2016

Abstract The low cost electrodeposition method was used to grow Cu2O thin films and experimentally determine the optimal absorber layer thickness. Raman scattering studies indicate the presence of solely crystalline Cu2O and SEM images show that the thin films consist of grains with a pyramidal shape. The influence of the thickness of the light absorbing Cu2O layer on the basic characteristic of the heterojunction and their properties have been investigated using reflectivity, current–voltage (J–V), capacitance–voltage (C–V) and the external quantum efficiency (EQE) measurements. The depletion layer, the charge collection length of the minority carrier, and reflectivity are the main factors…

010302 applied physicsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionOpticsDepletion regionlawPhotovoltaics0103 physical sciencesSolar cellOptoelectronicsQuantum efficiencyThin film0210 nano-technologybusinessShort circuitSolar Energy Materials and Solar Cells
researchProduct

Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics

2010

Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…

010302 applied physicsPermittivityMaterials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistryEquivalent oxide thickness02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionElectric field0103 physical sciencesMaterials ChemistryElectrochemistry0210 nano-technologyCurrent densityLeakage (electronics)High-κ dielectricJournal of The Electrochemical Society
researchProduct

Experimental comparison of two control algorithms for low-saliency ratio interior permanent magnet synchronous motors

2018

In this paper, an experimental investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs) is described, analyzed and discussed. This investigation was carried out on a small-power IPMSM with low saliency ratio. More in detail, after a previous simulation study, the control techniques have been experimentally implemented and validated through means of a dSPACE® rapid prototyping system. The performances of the two algorithms have been evaluated and compared, obtaining interesting results.

010302 applied physicsRapid prototypingControl algorithmElectromagneticsPermanent magnet synchronous motorComputer scienceRenewable Energy Sustainability and the Environment020208 electrical & electronic engineeringlow saliency ratio motor02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesField oriented control algorithmmaximum torque per ampere control algorithmControl theoryMagnet0103 physical sciencesAutomotive Engineering0202 electrical engineering electronic engineering information engineeringTorqueInterior permanent magnet synchronous machineAmpereMaximum torque
researchProduct

Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables

2019

This review takes into account articles and standards published in recent years concerning the application of the Pulsed Electro Acoustic (PEA) method for space charge measurement on High Voltage Direct Current (HVDC) cables and mini-cables. Since the 80s, the PEA method has been implemented for space charge measurements on flat specimens in order to investigate space charge phenomena and to evaluate the ageing of dielectrics. In recent years, this technique has been adapted to cylindrical geometry. Several studies and experiments have been carried out on the use of the PEA method for full size cables and HVDC cable models. The experiments have been conducted using different arrangements of…

010302 applied physicspulsed Electroacoustic technique (PEA)Cylindrical geometryControl and Optimizationlcsh:TRenewable Energy Sustainability and the EnvironmentComputer science020209 energyEnergy Engineering and Power TechnologyMechanical engineering02 engineering and technologylcsh:Technology01 natural sciencesSpace chargeHVDC cablesSpace chargeSettore ING-IND/31 - ElettrotecnicaReliability (semiconductor)0103 physical sciences0202 electrical engineering electronic engineering information engineeringHigh-voltage direct currentElectrical and Electronic EngineeringEngineering (miscellaneous)Energy (miscellaneous)
researchProduct

A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation

2021

The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…

010405 organic chemistryRenewable Energy Sustainability and the EnvironmentUNESCO::QUÍMICAHigh selectivityTriazoleGeneral ChemistryMicroporous materialQuímica010402 general chemistry01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesIonchemistry.chemical_compoundAdsorptionchemistryChemical engineeringCarbon dioxideMoleculeGeneral Materials ScienceLinkerMaterialsKinetic diameterJournal of Materials Chemistry A
researchProduct

The impact of climate change on extreme precipitation in Sicily, Italy

2018

Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short-duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub-hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth-Duration-Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscalin…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyClimate change02 engineering and technology01 natural sciences11. SustainabilityClimate changePrecipitationDrainageClimate change; DDF; EURO-CORDEX; Extreme precipitation; RCM; Temporal downscaling; Water Science and Technology0105 earth and related environmental sciencesWater Science and TechnologyExtreme precipitationRain gaugeFlooding (psychology)Representative Concentration PathwaysTemporal downscaling020801 environmental engineering13. Climate actionClimatologyRCMEnvironmental scienceDDFClimate modelEURO-CORDEXDownscalingHydrological Processes
researchProduct

Impact of internal variability on projections of Sahel precipitation change.

2017

12 pages; International audience; The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920–2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variabilit…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyClimate changeMagnitude (mathematics)Time horizon02 engineering and technologyForcing (mathematics)01 natural sciencesWest AfricaPrecipitation0105 earth and related environmental sciencesGeneral Environmental ScienceHorizon (archaeology)Renewable Energy Sustainability and the EnvironmentPublic Health Environmental and Occupational Healthuncertainties020801 environmental engineeringclimate change13. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyClimatologyGreenhouse gasinternal variabilityEnvironmental scienceCommon spatial pattern[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/Climatology
researchProduct