Search results for "Symbiotic"

showing 10 items of 64 documents

Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza

2016

International audience; Soil nutrient acquisition and exchanges through symbiotic plant–fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, p…

0106 biological sciences0301 basic medicine[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologySoil nutrientsmembrane transportmycorrhizal transportomePlant Science01 natural sciences03 medical and health sciencesSymbiosissymbiotic plant–fungusMycorrhizaeBotany[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyMycorrhizaplant mineral nutritionSugarSymbiosis2. Zero hungerRhizospherebiologybusiness.industryCrop yieldfungimycorrhizal plants and fungiMembrane Transport Proteinsfood and beveragesBiological Transportnew agro-ecological systems15. Life on landPlantsbiology.organism_classificationKey features030104 developmental biologyAgronomyAgriculturebusinessImproved crop yield010606 plant biology & botany
researchProduct

Characterization of the Heme Pocket Structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus

2017

14 Pags.- 6 Figs. This article is part of the Research Topic: Advances in legume research ( http://journal.frontiersin.org/researchtopic/4288/advances-in-legume-research ). Copyright of the Authors through a Creative Commons Attribution License. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.

0106 biological sciences0301 basic medicineligand bindingLotus japonicusMutantPlant Science01 natural sciencesheme cavity03 medical and health scienceschemistry.chemical_compoundnon-symbiotic hemoglobinsBiologyHemebiologyChemistryNitrosylationHexacoordinateNitric oxide dioxygenaseLigand (biochemistry)biology.organism_classificationAffinitiesChemistry030104 developmental biologyBiochemistryLotus japonicusnitric oxide dioxygenase010606 plant biology & botany
researchProduct

Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs

2018

Dead wood is initially a nitrogen (N) poor substrate, where the N content increases with decay, partly due to biological N2 fixation, but the drivers of the N accumulation are poorly known. We quantified the rate of N2 fixation in decaying Norway spruce logs of different decay stages and studied the potential regulators of the N2-fixation activity. The average rate for acetylene reduction in the decaying wood was 7.5 nmol ethylene g−1d−1, which corresponds to 52.9 μg N kg−1d−1. The number of nifH copies (g−1 dry matter) was higher at the later decay stages, but no correlation between the copy number and the in vitro N2 fixation rate was found. All recovered nifH sequences were assigned to t…

0106 biological sciences0301 basic medicineta1172Soil Sciencechemistry.chemical_element010603 evolutionary biology01 natural sciencesMicrobiologyMethane03 medical and health scienceschemistry.chemical_compoundlahoaminenBotanyDry matterlahopuutritsobitdead woodnifHbiologyPicea abiesChemistryta1183coarse woody debrisPicea abiesbiology.organism_classificationNitrogenSubstrate (marine biology)kuusi030104 developmental biologytypensidontaasymbiotic nitrogen fixationNitrogen fixationDiazotrophCoarse woody debrisSoil Biology and Biochemistry
researchProduct

2020

Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host’s life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in …

0106 biological sciences0303 health sciencesbiologyHost (biology)media_common.quotation_subjectfungifood and beveragesZoologyOryzaephilus surinamensisbiology.organism_classification010603 evolutionary biology01 natural sciences03 medical and health sciencesAposymbioticSymbiosisInsect ScienceSexual maturityPEST analysisMetamorphosisDesiccation030304 developmental biologymedia_commonInsects
researchProduct

Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle

2022

ABSTRACT Many insects benefit from bacterial symbionts that provide essential nutrients and thereby extend the hosts’ adaptive potential and their ability to cope with challenging environments. However, the implications of nutritional symbioses for the hosts’ defence against natural enemies remain largely unstudied. Here, we investigated whether the cuticle-enhancing nutritional symbiosis of the saw-toothed grain beetle Oryzaephilus surinamensis confers protection against predation and fungal infection. We exposed age-defined symbiotic and symbiont-depleted (aposymbiotic) beetles to two antagonists that must actively penetrate the cuticle for a successful attack: wolf spiders (Lycosidae) an…

0106 biological sciencesCuticlePhysiologyCuticleBeauveria bassianaZoologyOryzaephilus surinamensisAquatic Science010603 evolutionary biology01 natural sciencesPredation03 medical and health sciencesAposymbioticMutualismSymbiosisCandidatus Shikimatogenerans silvanidophilusOryzaephilus surinamensisSawtoothed grain beetleAnimalsSymbiosisMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biologyStructural defenceMutualism (biology)0303 health sciencesbiologyBacteroidetesHost (biology)fungi15. Life on landbiology.organism_classificationColeopteraMycosesPredatory BehaviorInsect ScienceAnimal Science and ZoologyResearch ArticleJournal of Experimental Biology
researchProduct

2021

Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains h…

0106 biological sciencesMicrobiology (medical)0303 health sciencesbiologyVillosaHost (biology)media_common.quotation_subjectInsectbiology.organism_classification010603 evolutionary biology01 natural sciencesMicrobiology03 medical and health sciencesAposymbioticDarkling beetleBurkholderiaSymbiosisBotany030304 developmental biologySymbiotic bacteriamedia_commonFrontiers in Microbiology
researchProduct

Genome sequence of the pea aphid Acyrthosiphon pisum

2010

The genome of the pea aphid shows remarkable levels of gene duplication and equally remarkable gene absences that shed light on aspects of aphid biology, most especially its symbiosis with Buchnera.

0106 biological sciencesTANDEM REPEATSGenome InsectGene TransferRRES175Sequència genòmicaFaculty of Science\Computer ScienceCPG METHYLATION01 natural sciencesGenomeMedical and Health SciencesInternational Aphid Genomics ConsortiumBiologiska vetenskaperBiology (General)GENE-EXPRESSION2. Zero hungerGenetics0303 health sciencesAphidGenomeAfídidsGeneral NeuroscienceGENOME SEQUENCEfood and beveragesDROSOPHILA CIRCADIAN CLOCKBiological SciencesGenetics and Genomics/Microbial Evolution and GenomicsINSECTEGenètica microbianapuceronAPIS-MELLIFERAGeneral Agricultural and Biological SciencesInfectionsymbioseBiotechnologyResearch ArticleVIRUS VECTORING175_GeneticsSYMBIOTIC BACTERIAGene Transfer HorizontalQH301-705.5ACYRTHOSIPHON PISUMBiologyHOLOMETABOLOUS INSECTSHOST-PLANT010603 evolutionary biologyGENOME SEQUENCE;PEA APHID;ACYRTHOSIPHON PISUM;INSECT-PLANT;HOST-PLANT;VIRUS VECTORING;PHENOTYPIC PLASTICITY;HOLOMETABOLOUS INSECTS;INSECTE;RAVAGEUR DES CULTURES; SOCIAL INSECTGeneral Biochemistry Genetics and Molecular BiologyHorizontal03 medical and health sciencesBuchneraPHENOTYPIC PLASTICITYINSECT-PLANTGeneticsGene familyLife ScienceAnimalsSymbiosisGene030304 developmental biologyWhole genome sequencingGeneral Immunology and MicrobiologyAnnotation; Aphid; Genome sequenceAgricultural and Veterinary Sciences175_EntomologyGenètica animalBacteriocytegénomegèneHuman GenomePEA APHIDBiology and Life Sciences15. Life on landbiochemical phenomena metabolism and nutritionbiology.organism_classificationREPETITIVE ELEMENTSDNA-SEQUENCESAcyrthosiphon pisumGenome SequenceGenetics and Genomics/Genome ProjectsRAVAGEUR DES CULTURESAphidsPHEROMONE-BINDINGBuchneraInsectDevelopmental Biology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

2020

Abstract Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis—the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)—were assembled at contiguit…

0106 biological sciencesTrebouxia0303 health sciencesbiologybiology.organism_classification010603 evolutionary biology01 natural sciencesGenome03 medical and health sciencesAposymbioticSymbiosisMetagenomicsEvolutionary biologyHorizontal gene transferGeneticsLichenGeneEcology Evolution Behavior and Systematics030304 developmental biologyGenome Biology and Evolution
researchProduct

Pea Efficiency of Post-drought Recovery Relies on the Strategy to Fine-Tune Nitrogen Nutrition

2020

International audience; As drought is increasingly frequent in the context of climate change it is a major constraint for crop growth and yield. The ability of plants to maintain their yield in response to drought depends not only on their ability to tolerate drought, but also on their capacity to subsequently recover. Post-stress recovery can indeed be decisive for drought resilience and yield stability. Pea (Pisum sativum), as a legume, has the capacity to fix atmospheric nitrogen through its symbiotic interaction with soil bacteria within root nodules. Biological nitrogen fixation is highly sensitive to drought which can impact plant nitrogen nutrition and growth. Our study aimed at dyna…

0106 biological sciencesagroecologyrootssymbiotic nitrogen fixationRoot nodulegrain legumes[SDV]Life Sciences [q-bio]chemistry.chemical_elementContext (language use)Plant ScienceBiologylcsh:Plant culture01 natural sciencesPisumyield stability03 medical and health sciencesSativumDrought recoverylcsh:SB1-1110resilienceLegumePisum sativumOriginal Research030304 developmental biologywater deficit2. Zero hunger0303 health sciencesfungifood and beverages15. Life on landbiology.organism_classificationNitrogenchemistryAgronomy13. Climate actionNitrogen fixation010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Infection by Endosymbiotic “Male-Killing” Bacteria in Coleoptera

2018

Wolbachia, Rickettsia, Spiroplasma and Cardinium are endosymbiotic and intracellular bacteria known to cause numerous disorders in host reproduction, reflected in their common name “male-killers”. In this study, 297 beetle species from various taxonomic groups were screened with the use of molecular markers for the presence of infection by any of these endosymbionts. Wolbachia was found to be the most common “male-killer” among beetle hosts as it infected approx. 27% of species. Rickettsia, Spiroplasma and Cardinium were much less prevalent as they infected: 8%, 3% and 2%, respectively, of the studied beetle species. This is the first report of Cardinium presence in beetle hosts. Incidences…

0106 biological sciencesbiologySpiroplasmabeetleintracellular infectionSpiroplasmaGeneral Medicinebiology.organism_classification010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMicrobiology010602 entomologychemistry.chemical_compoundRickettsiachemistryMolecular markerCardiniumWolbachiaRickettsiaBacteriaEndosymbiotic bacteriaWolbachiaFolia Biologica-Krakow
researchProduct