Search results for "Synthetic"

showing 10 items of 723 documents

Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection.

2016

Hafnia alvei is a facultative and rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. Although it has been more than 50 years since the genus was identified, very little is known about variations among Hafnia species. Diversity in O-antigens (O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to different hosts and situations and variability in the environment. Antigenic variation is also an important factor in pathogenicity that has been used to define clones within a number of species. The genes that are required to synthesize OPS are always clustered within the bacterial chromosome. A serotyping scheme including 39 O-serotypes has…

0301 basic medicineGlycobiologylcsh:MedicineArtificial Gene Amplification and ExtensionGenomePolymerase Chain ReactionBiochemistryDatabase and Informatics MethodsNucleic AcidsGene clusterlcsh:SciencePhylogenyGeneticsMultidisciplinaryChromosome BiologyPolysaccharides BacterialO AntigensEnzymesMultigene FamilySequence AnalysisResearch ArticleDNA Bacterial030106 microbiologySequence DatabasesBiologyResearch and Analysis MethodsSensitivity and SpecificityChromosomesBacterial genetics03 medical and health sciencesTransferasesSequence Motif AnalysisPolysaccharidesGenetic variationAntigenic variationGeneticsSerotypingMolecular Biology TechniquesSequencing TechniquesOperonsGeneMolecular BiologyGenetic diversityCircular bacterial chromosomelcsh:RGenetic VariationReproducibility of ResultsBiology and Life SciencesProteinsHafnia alveiCell BiologyDNABiosynthetic Pathways030104 developmental biologyBiological DatabasesEnzymologylcsh:QSequence AlignmentGenome BacterialPLoS ONE
researchProduct

High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits

2019

Biocomputing uses molecular biology parts as the hardware to implement computational devices. By following pre-defined rules, often hard-coded into biological systems, these devices are able to process inputs and return outputs-thus computing information. Key to the success of any biocomputing endeavor is the availability of a wealth of molecular tools and biological motifs from which functional devices can be assembled. Synthetic biology is a fabulous playground for such purpose, offering numerous genetic parts that allow for the rational engineering of genetic circuits that mimic the behavior of electronic functions, such as logic gates. A grand challenge, as far as biocomputing is concer…

0301 basic medicineHistologyComputer scienceProcess (engineering)lcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologyField (computer science)Metabolic engineering03 medical and health sciencesSynthetic biologygenetic circuitslcsh:TP248.13-248.65ConceptualizationIntersection (set theory)business.industryBioengineering and Biotechnologybiocomputing021001 nanoscience & nanotechnologyboolean logic030104 developmental biologyPerspectiveKey (cryptography)metabolic networkssynthetic biology0210 nano-technologySoftware engineeringbusinessmetabolic engineeringHost (network)Biotechnology
researchProduct

The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of

2020

Redox cofactors play a pivotal role in primary cellular metabolism, whereas the clear link between redox status and secondary metabolism is still vague. In this study we investigated effects of redox perturbation on the production of erythromycin in Saccharopolyspora erythraea by expressing the water-forming NADH oxidase (NOX) from Streptococcus pneumonia at different levels with synthetic promoters. The expression of NOX reduced the intracellular [NADH]/[NAD+] ratio significantly in S. erythraea which resulted in an increased production of erythromycin by 19∼29% and this increment rose to 60% as more oxygen was supplied. In contrast, the lower redox ratio resulted in a decreased production…

0301 basic medicineHistologylcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologyRedoxCofactorredox regulation03 medical and health scienceschemistry.chemical_compoundBiosynthesislcsh:TP248.13-248.65Guanosine monophosphateSecondary metabolismOriginal Researchsecondary metabolismbiologyBioengineering and Biotechnologyc-di-GMP021001 nanoscience & nanotechnologybiology.organism_classificationSaccharopolyspora erythraea030104 developmental biologysynthetic promotersBiochemistrychemistryNADH oxidasebiology.proteinDiguanylate cyclaseSaccharopolyspora erythraeaNAD+ kinase0210 nano-technologyBiotechnologyFrontiers in bioengineering and biotechnology
researchProduct

Crossing kingdoms:How can art open up new ways of thinking about science?

2020

“Crossing Kingdoms” is an artist-led experiment in the biological fusion of mammalian and yeast cells and the cultural discussions of these phenomena. We present this collaboration as an experiment in responsible research and innovation (RRI), an institutionalized format for ensuring that researchers reflect on the wider social dimensions of their work. Our methods challenged us as researchers to reflect on interdisciplinary collaboration and the possibility of innovating in biology for artistic purposes, challenged audiences to reflect on biological boundaries, and challenged both groups to reflect on what it means to be responsible in science. We conclude that our experiment in RRI was su…

0301 basic medicineHistologylcsh:BiotechnologyBiomedical Engineeringresponsible research and innovationhybrid taxaBioengineering02 engineering and technologySocial dimension03 medical and health sciencesSynthetic biologyKingdominterdisciplinaritylcsh:TP248.13-248.65responsible research and innovation (RRI)Responsible Research and InnovationBioengineering and Biotechnologyart-science collaboration021001 nanoscience & nanotechnology030104 developmental biologyPerspectiveStandard protocolEngineering ethicssynthetic biology0210 nano-technologyBiotechnology
researchProduct

Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection

2019

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacolog…

0301 basic medicineImmunologyBiologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemRAR-related orphan receptor gammamedicineAnimalsImmunology and AllergyFatty acid synthesisBarrier functionLamina propriaEffectorFatty AcidsInnate lymphoid cellT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 3ColitisInflammatory Bowel DiseasesImmunity InnateBiosynthetic PathwaysDisease Models Animal030104 developmental biologymedicine.anatomical_structurechemistryImmunologyLipogenesisBiomarkersAcetyl-CoA Carboxylase030215 immunologyMucosal Immunology
researchProduct

Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles

2019

Bacterial microcompartments (BMCs) are prokaryotic organelles consisting of a protein shell and an encapsulated enzymatic core. BMCs are involved in several biochemical processes, such as choline, glycerol and ethanolamine degradation and carbon fixation. Since non-native enzymes can also be encapsulated in BMCs, an improved understanding of BMC shell assembly and encapsulation processes could be useful for synthetic biology applications. Here we report the isolation and recombinant expression of BMC structural genes from the Klebsiella pneumoniae GRM2 locus, the investigation of mechanisms behind encapsulation of the core enzymes, and the characterization of shell particles by cryo-EM. We …

0301 basic medicineKlebsiella pneumoniaeScience030106 microbiologyGeneral Physics and AstronomyLyasesGeneral Biochemistry Genetics and Molecular BiologyArticleCholine03 medical and health sciencesSynthetic biologyBacterial ProteinsBacterial microcompartmentCryoelectron microscopyOrganellelcsh:ScienceCellular microbiologychemistry.chemical_classificationOrganellesBacterial structural biologyMultidisciplinarybiologyChemistryStructural geneQSignal transducing adaptor proteinGeneral ChemistryLyasebiology.organism_classificationRecombinant ProteinsKlebsiella pneumoniae030104 developmental biologyEnzymeGenetic LociBiophysicslcsh:QSynthetic BiologyNature Communications
researchProduct

Synthetic biology: Engineered stable ecosystems

2017

International audience; Co-culture of bacterial cells engineered with quorum-sensing and self-lysis circuits allows coupled oscillatory dynamics and stable states, opening the way to engineered microbial ecosystems with targeted dynamics and extending gene circuits to the ecosystem level.

0301 basic medicineMicrobiology (medical)Gene CircuitsEcology[SDV]Life Sciences [q-bio]ImmunologyCell BiologyBiologyApplied Microbiology and BiotechnologyMicrobiology03 medical and health sciencesSynthetic biology030104 developmental biology0302 clinical medicineGeneticsEcosystem030217 neurology & neurosurgeryEcosystem levelComputingMilieux_MISCELLANEOUSStable state
researchProduct

1,3,5-Triazines: A promising scaffold for anticancer drugs development

2017

This review covering literature reports from the beginning of this century to 2016 describes the synthetic pathways, the antitumor activity, the structure-activity relationship and, whenever reported, the possible mechanism of action of 1,3,5-triazine derivatives as well as of their hetero-fused compounds. Many 1,3,5-triazine derivatives, both uncondensed and hetero-fused, have shown remarkable antitumor activities and some of them reached clinical development.

0301 basic medicineModels MolecularScaffold31Disubstituted 135-triazineTrisubstituted 135-triazineAntineoplastic AgentsChemistry Techniques Synthetic01 natural sciences03 medical and health sciencesStructure-Activity RelationshipNeoplasmsDrug DiscoverymedicineAnimalsHumans5-TriazinesTrisubstituted 1Disubstituted 1Antitumor activityPharmacologyHeterofused 135-triazine010405 organic chemistryChemistryTriazinesNitrogen heterocyclesDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryGeneral MedicineHeterofused 1Combinatorial chemistry135-Triazine0104 chemical sciences030104 developmental biologyNitrogen heterocycleMechanism of action1; 3; 5-Triazines; Antitumor activity; Disubstituted 1; 3; 5-triazines; Heterofused 1; 3; 5-triazines; Nitrogen heterocycles; Trisubstituted 1; 3; 5-triazines; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic Chemistrymedicine.symptomAntitumor activity
researchProduct

Standardisation and social ordering: A change of perspective

2021

This article examines standardisation in synthetic biology as a form of social coordination and ordering. I discuss standardisation by exploring what makes standards possible, and offer an understanding based on infrastructures: technical and social systems that support the existence and operation of accepted standards. By exploring the role of social infrastructures, I contend that standards depend upon social ordering: ways of arranging people in particular positions, relations, and hierarchies. I suggest that synthetic biologists ought to develop an awareness of these social orders, take responsibility for their creation, and accept accountability for their consequences, both technical a…

0301 basic medicineMultidisciplinarySocial coordinationPerspective (graphical)02 engineering and technologysocial orders021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyHistory and Philosophy of ScienceSocial systemAccountabilitystandardsEngineering ethicsSociologysynthetic biology0210 nano-technologyinfrastructuresresponsiblityMètode Revistade difusió de lainvestigació
researchProduct

Can life be standardized? Current challenges in biological standardization

2021

The concept of standard strongly evokes machines, industries, electric or mechanical devices, vehicles, or furniture. Indeed, our technological civilization would not be possible – at least in the terms it is structured today – without universal, reliable components, whose acknowledged use results in competitive costs, robustness and interchangeability. For example, an Ikea screw can be used in a wide set of structurally dissimilar furniture and an app can be run on many different smartphones. The very concept of standardization is linked to the industrial revolution and mass production of goods through assembly lines. The question we will try to answer in the present paper is the extent to…

0301 basic medicineMultidisciplinaryStandardizationComputer scienceContext-dependencyModularityInterchangeabilityPromiscuity03 medical and health sciences030104 developmental biology0302 clinical medicineHistory and Philosophy of ScienceRisk analysis (engineering)Robustness (computer science)RealmNoise030217 neurology & neurosurgeryMechanical devicesSynthetic biologyMètode Revistade difusió de lainvestigació
researchProduct