Search results for "THEORIE"

showing 10 items of 354 documents

NONLOCAL LAYER-WISE ADVANCED THEORIES FOR LAMINATED PLATES

2019

Eringen nonlocal layer-wise models for the analysis of multilayered plates are formulated in the framework of the Carrera Unified Formulation and the Reissner Mixed Variational Theorem (RMVT). The use of the layer-wise approach and RMVT ensures the fulfilment of the transverse stress equilibrium at the layers’ interfaces and allows the analysis of plates with layers exhibiting different characteristic lengths in their nonlocal behaviour. A Navier solution has been implemented and tested for the static bending of rectangular simply-supported plates. The obtained results favourably compare against available three-dimensional analytic results and demonstrate the features of the proposed theori…

Nonlocal advanced plate theories Carrera Unified Formulation Reissner Mixed Variational TheoremSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Time evolution of linearized gauge field fluctuations on a real-time lattice

2016

Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

Nuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeFOS: Physical sciences114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencestime evolutionGauge theory010306 general physicsEngineering (miscellaneous)Quantum fluctuationlattice simulationsPhysics010308 nuclear & particles physicsGauss' lawGaussHigh Energy Physics - Lattice (hep-lat)Time evolutionParticle Physics - LatticeHigh Energy Physics - PhenomenologyClassical mechanicsgauge theories
researchProduct

Consistent Searches for SMEFT Effects in Non-Resonant Dilepton Events

2019

Employing the framework of the Standard Model Effective Field Theory, we perform a detailed reinterpretation of measurements of the Weinberg angle in dilepton production as a search for new-physics effects. We truncate our signal prediction at order $1/\Lambda^2$, where $\Lambda$ denotes the new-physics mass scale, and introduce a theory error to account for unknown contributions of order $1/\Lambda^4$. Two linear combinations of four-fermion operators with distinct angular behavior contribute to dilepton production with growing impact at high energies. We define suitable angular observables and derive bounds on those two linear combinations using data from the Tevatron and the LHC. We find…

Nuclear and High Energy Physics530 PhysicsHigh Energy Physics::PhenomenologyFOS: Physical sciencesEffective Field Theories10192 Physics InstituteHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Beyond Standard Modellcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivity3106 Nuclear and High Energy Physics
researchProduct

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

2018

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

Nuclear and High Energy PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectgr-qcDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsStellar evolutionmedia_commonParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsStar formationGravitational wavehep-exGeneral Relativity and CosmologyFifth forcehep-phCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyNeutron starBeyond Standard Modelastro-ph.COlcsh:QC770-798Particle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Broad excitations in a 2+1D overoccupied gluon plasma

2021

Motivated by the initial stages of high-energy heavy-ion collisions, we study excitations of far-from-equilibrium 2+1 dimensional gauge theories using classical-statistical lattice simulations. We evolve field perturbations over a strongly overoccupied background undergoing self-similar evolution. While in 3+1D the excitations are described by hard-thermal loop theory, their structure in 2+1D is nontrivial and nonperturbative. These nonperturbative interactions lead to broad excitation peaks in spectral and statistical correlation functions. Their width is comparable to the frequency of soft excitations, demonstrating the absence of soft quasiparticles in these theories. Our results also su…

Nuclear and High Energy PhysicsCOLLISIONSNuclear TheoryField (physics)FOS: Physical sciencesLattice QCDQC770-798hiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesPerturbative QCDfysikkField theory (psychology)Gauge theory010306 general physicsKINETIC-THEORYUNIVERSAL DYNAMICSPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]MASS SCALENUCLEI010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmaPerturbative QCDLattice QCDFIELD-THEORY3. Good healthGluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsQuark–gluon plasmaQuasiparticleQuark-Gluon PlasmaGAUGE-THEORIESJournal of High Energy Physics
researchProduct

Searching for Earth/Solar axion halos

2020

We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyCP violationBeyond Standard Modellcsh:QC770-798CP violationHaloEarth (classical element)Astrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)Journal of High Energy Physics
researchProduct

Critical point Higgs inflation in the Palatini formulation

2021

We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling $\lambda$ and the top Yukawa coupling $y_t$, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling $\xi$. The spectral index $n_s$ can take any value in the observationally allowed range. The lower limit for the running is $\alpha_s>-3.5\times10^{-3}$, and $\alpha_s$ can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is $2.2\tim…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesRIEMANNGeneral Relativity and Quantum Cosmology (gr-qc)Parameter spaceINITIAL CONDITIONSkosmologia01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyEINSTEINCritical point (thermodynamics)0103 physical sciencesRenormalization Grouplcsh:Nuclear and particle physics. Atomic energy. Radioactivityteoreettinen fysiikkaGENERAL-RELATIVITY010306 general physicscosmology of theories beyond the SMDISSIPATIONBosonMathematical physicsInflation (cosmology)Physics010308 nuclear & particles physicsYukawa potentialCONSTRAINTSBOSONGRAVITATIONRenormalization groupAFFINE VARIATIONAL-PRINCIPLESCosmology of Theories beyond the SMInflection pointHiggs bosonSCALARONlcsh:QC770-798renormalization groupAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Production of dark-matter bound states in the early universe by three-body recombination

2018

The small-scale structure problems of the universe can be solved by self-interacting dark matter that becomes strongly interacting at low energy. A particularly predictive model for the self-interactions is resonant short-range interactions with an S-wave scattering length that is much larger than the range. The velocity dependence of the cross section in such a model provides an excellent fit to self-interaction cross sections inferred from dark-matter halos of galaxies and clusters of galaxies if the dark-matter mass is about 19 GeV and the scattering length is about 17 fm. Such a model makes definite predictions for the few-body physics of weakly bound clusters of the dark-matter particl…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear Theorymedia_common.quotation_subjectPhysics beyond the Standard ModelDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateEffective field theoryCluster (physics)lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear Experimentmedia_commonPhysics010308 nuclear & particles physicsScattering lengthCosmology of Theories beyond the SMUniverseGalaxyHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses

2020

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly class…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsCosmology of Theories beyond the SMGalaxyUniverseDwarf spheroidal galaxyHidden sectorHigh Energy Physics - PhenomenologyAntiprotonBeyond Standard Modellcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects

2020

Coherent Elastic neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CEνNS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at t…

Nuclear and High Energy PhysicsField theory (Physics)Nuclear TheoryPhysics::Instrumentation and DetectorsFOS: Physical sciencesContext (language use)01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsRoot mean squareNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutronSpallationNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrinsNuclear Experiment (nucl-ex)Neutrinos010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsScatteringDetectorTeoria de camps (Física)Effective Field TheoriesHigh Energy Physics - Phenomenologylcsh:QC770-798NeutrinoSpallation Neutron Source
researchProduct