Search results for "THERMODYNAMICS"
showing 10 items of 2774 documents
Simulation of IQE tuning of individual cells for DC-balancing multijunction tandem cells
2016
In the present work, the performance of stacks of cells connected in series is examined at different levels of internal quantum efficiency (IQE). Incident photons, generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the stack of cells. The efficiencies of the devices studied are dependent upon the DC balance throughout the stack of cells. It is demonstrated that reducing the internal quantum efficiency of upper cells can lead to a better DC balance and thereby higher efficiency.
Optical study for springback prediction, thickness reduction and forces variations on single point incremental forming
2019
Abstract The goal of the present work is to present an experimental study regarding the influence of the main technological influence factors such as the vertical step and the punch diameter on the single point incremental forming process (SPIF). In this paper we estimate the influence of these two factors on springback, thickness reduction and forces. Both parameters were varied on two levels: (d) punch diameter 6 and 10 mm and (s) vertical step 0,1 and 0,5 mm. The experiments were done on experimental layout composed by a robot, a clamping system that contains the die’s lower part and the optical system.
Quantification of relaxor behavior in (1 − x)Na0.5Bi0.5TiO3 – xCaTiO3 lead-free ceramics system
2019
Abstract This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3–xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the s…
Simulations of the effect of the contact energy levels on a simple model of a hot carrier cell
2016
In the present work, the performance of a simplified model of a hot carrier cell is examined at different energy levels of carrier collection. Incident photons, Monte Carlo generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the cell. It is assumed that the carriers can be collected ultra-fast, thus avoiding considering hot carrier thermalisation effects. Although the model is preliminary and lacking some mechanisms of hot carrier cells, it has been demonstrated that the present approach to modelling hot carrier solar cells can be developed into fully working models. Some effects of the absorption energy levels in the valence band have been…
On the ‘expanded local mode’ approach applied to the methane molecule: isotopic substitution CH2D2←CH4
2011
On the basis of a compilation of the ‘expanded local mode’ model and the general isotopic substitution theory, sets of simple analytical relations between different spectroscopic parameters (harmonic frequencies, ωλ, anharmonic coefficients, x λμ, ro-vibrational coefficients, , different kinds of Fermi- and Coriolis-type interaction parameters) of the CH2D2 molecule are derived. All of them are expressed as simple functions of a few initial spectroscopic parameters of the mother, CH4, molecule. Test calculations with the derived isotopic relations show that, in spite of a total absence of initial information about the CH2D2 species, the numerical results of the calculations have a very good…
Towards highly accurate ab initio thermochemistry of larger systems: benzene.
2011
The high accuracy extrapolated ab initio thermochemistry (HEAT) protocol is applied to compute the total atomization energy (TAE) and the heat of formation of benzene. Large-scale coupled-cluster calculations with more than 1500 basis functions and 42 correlated electrons as well as zero-point energies based on full cubic and (semi)diagonal quartic force fields obtained with the coupled-cluster singles and doubles with perturbative treatment of the triples method and atomic natural orbital (ANO) triple- and quadruple-zeta basis sets are presented. The performance of modifications to the HEAT scheme and the scaling properties of its contributions with respect to the system size are investiga…
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor
2019
Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of thre…
Variable Cooperative Interactions in the Pressure and Thermally Induced Multistep Spin Transition in a Two-Dimensional Iron(II) Coordination Polymer
2020
Two types of experiments conducted to investigate the effect of pressure on the spin crossover (SCO) properties of the 2D Fe(II) coordination polymer formulated {Fe[bipy(ttr)2]}n are reported, namely, (1) magnetic measurements performed at variable temperature and at fixed pressure and (2) visible spectroscopy at variable pressure and fixed temperature. The magnetic experiments carried out under a hydrostatic pressure constraint of 0.04, 0.08, and 0.8 GPa reveal a two-step spin transition behavior. The characteristic critical temperatures of the spin transition are shifted upward in temperature as pressure increases. The slope of the straight-line of the Tc vs P plot, dTc/dP, is 775 K/GPa a…
A Generalized Semiempirical Approach to the Modeling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymo…
2021
A generalization of the modeling equation of optical band gap values for ternary oxides, as a function of cationic ratio composition, is carried out based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity proposed some years ago. In this work, a novel approach is suggested to account for the differences in the band gap values of the different polymorphs of binary oxides as well as for ternary oxides existing in different crystalline structures. A preliminary test on the validity of the proposed modeling equations has been carried out by using the numerous experimental data pertaining to alumina and gallia p…