Search results for "THIN-FILM"

showing 10 items of 66 documents

Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films

2008

The correlations between morphological features and field-effect properties of poly(alkoxyphenylene-thiophene) thin Langmuir–Schafer film deposited on differently terminated gate dielectric surfaces, namely bare and methyl functionalized thermal silicon dioxide (t-SiO2), have been systematically studied. The film morphology has been investigated at different film thickness by Scanning Force Microscopy. Films thicker than a few layers show comparable morphology on both dielectric surfaces while differences are seen for the ultra-thin polymer deposit in close proximity to the substrate. Such deposit is notably more heterogeneous on bare t-SiO2, while a more compact and uniform nanogranular st…

Materials scienceSiliconSilicon dioxideGate dielectricField effectchemistry.chemical_elementConducting polymersNanotechnologySubstrate (electronics)Dielectricchemistry.chemical_compoundMaterials ChemistryComposite materialThin filmConductive polymerLangmuir-Schäfer organic thin-filmsOrganic–inorganic interfaceConducting polymers; Langmuir-Schäfer organic thin-films; Organic field effect transistors; Organic-inorganic interfaceOrganic-inorganic interfaceConducting polymerLangmuir–Schäfer filmMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialstransistors thin films nanotechnology Langmuir-ShaeferchemistryOrganic field effect transistorsOrganic field effect transistor
researchProduct

Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

2013

This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…

Materials scienceSupramolecular chemistryNanotechnologyReviewlcsh:Technologysolution processeslaw.inventionelectronic devices solution processes polymers thin filmslawmorphologyGeneral Materials ScienceElectronicsThin filmlcsh:MicroscopyNanoscopic scaleplastic electronicslcsh:QC120-168.85chemistry.chemical_classificationOrganic electronicslcsh:QH201-278.5lcsh:TTransistorPolymerchemistrythin filmsThin-film transistorlcsh:TA1-2040solar cellslcsh:Descriptive and experimental mechanicstransistorslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Role of the Back Metal-Semiconductor Contact on the Performances of a-Si:H Solar Cells

2011

We have investigated the role of the metal-semiconductor back contact on the performances of thin film modules consisting of single junction a-Si:H photovoltaic (PV) cells deposited with p-i-n configuration. We find that an adequate choice of the back contact helps reducing the barrier height of the junction improving the contact conductivity. For this purpose Mo has shown to be effective. Moreover we find that Mo, as refractory material, has additional beneficial effects reducing the formation of defects leading to the decrease of recombination losses. We have then fabricated a PV module on flexible substrate for indoor energy harvesting applications using Mo as back contact. An efficiency…

Materials scienceThin-film solar cells hydrogenated amorphous silicon (a-Si:H)transparent conductive oxidebusiness.industryOptoelectronicsThin film solar cellbusinessMetal semiconductorTransparent conducting film
researchProduct

The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors

2018

International audience; Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (…

Materials sciencematerials designoxidizing no2Analytical chemistry02 engineering and technologyElectronthin-film transistors010402 general chemistry01 natural scienceslangmuir-blodgett-filmsgas sensorchemistry.chemical_compoundMaterials Chemistry[CHIM]Chemical SciencesGeneral Materials Sciencemolecular materialsHOMO/LUMOcopper-phthalocyanineOrganic field-effect transistorAmbipolar diffusionbusiness.industryfield-effect transistorschemical sensors021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorchemistryPhthalocyanineCharge carrierdecker complexes0210 nano-technologybusiness
researchProduct

Optical Fibre NO2 Sensor Based on Lutetium Bisphthalocyanine in a Mesoporous Silica Matrix

2018

International audience; In this article, we describe a NO2 sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc2) in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO2. NO2 is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre. As diffusion of NO2 in LuPc2 is slow, the response time could be slow. To reduce it, the active molecules are dispersed in a mesoporous silica matrix deposited by a sol-gel process (Evaporation Induced Self Assembly) avoiding the formation of large crystals. Doing so, the response i…

Optical fiberMaterials scienceAbsorption spectroscopynitrogen dioxideairchemistry.chemical_element02 engineering and technologyengineering.materialphthalocyanineslcsh:Chemical technology010402 general chemistry01 natural sciencesBiochemistrylangmuir-blodgett-filmsArticleAnalytical Chemistrylaw.inventionoptical fibre sensors; sol-gel; nitrogen dioxide; lutetium bisphthalocyanineCoatinglawsol-gel[CHIM]Chemical Scienceslcsh:TP1-1185Electrical and Electronic EngineeringThin filmInstrumentationSol-gelcomplexeshybridMesoporous silicaoptical fibre sensorsrespiratory system021001 nanoscience & nanotechnologyEvaporation (deposition)Atomic and Molecular Physics and OpticsLutetium0104 chemical sciencesselective detectionozonechemistryChemical engineering13. Climate actionthin-filmsengineeringlutetium bisphthalocyanine0210 nano-technologySensors; Volume 18; Issue 3; Pages: 740
researchProduct

Electrochemical fabrication of metal/oxide/conducting polymer junction

2011

After discovery of conducting polymers and the possibility to modify their electrical properties from insulating to metallic like behavior by doping and a careful choice of the processing conditions, a large amount of research effort has been devoted to the theoretical understanding of their solid state properties as well as to exploit the possible application of conducting polymers in many technological fields including large area organic electronics, polymer photovoltaic cell, and sensors. 1-4 Organic thin film transistors appear very promising devices for the development of low cost, flexible, and disposable plastic electronics. In order to reduce the operating voltage it has been sugges…

Organic electronicsConductive polymerMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryAnodizingNanotechnologyTransistor characteristicsDielectricSputter depositionCondensed Matter PhysicsSettore ING-INF/01 - ElettronicaSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrganic semiconductorSettore ING-IND/23 - Chimica Fisica ApplicataThin-film transistorMaterials ChemistryElectrochemistryPhotocurrent spectroscopyOptoelectronicsField-effect transistormetal/oxide/conducting polymer junctionPEDOT Ti-Zr mixed oxidebusinessEthylenedioxythiophene
researchProduct

Recent advances in upscalable wet methods and ink formulations for printed electronics

2014

This review deals with the use of solution processing approaches for organic electronics with a focus on material ink formulations as well as on their applicability. The solution processing techniques include methods like gravure printing, screen printing and ink-jet printing. Basic principles of each approach are understood and fundamental correlations between material (metals, semiconductors, and dielectrics) ink properties and final device performances can be drawn. Nevertheless, solution processing methods have the potential to evolve as the most promising tools in organic device fabrication techniques and have already been applied successfully in the fields of organic thin film transis…

Organic electronicsMaterials scienceFabricationInkwellink-jetorganic electronics; printing; ink-jet; inksNanotechnologyGeneral ChemistryProcessing methodsprintingThin-film transistorPrinted electronicsinksScreen printingorganic electronicMaterials Chemistry
researchProduct

Organic Thin-Film Transistors with Enhanced Sensing Capabilities

2009

Organic thin-film transistors, used as sensing devices, have been attracting quite a considerable interest lately as they offer advantages such as multi parameter behaviour and possibility to be quite easily molecularly tuned for the detection of specific analytes. Here, a study on the dependences of the devices responses on important parameters such as the active layer thickness and its morphology as well as on the transistor channel length is presented. To introduce the least number of variables the system chosen for this study is quite a simple and well assessed one being based on a thiophene oligomer active layer exposed to 1-butanol vapours.

Organic electronicsMaterials scienceOrganic field-effect transistorbusiness.industryTransistorGate dielectricContact resistancemedicine.diseaselaw.inventionActive layerlawThin-film transistormedicineOptoelectronicsnanotechnology organic materials thin films transistorsbusinessVapours
researchProduct

Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface

2011

This work reports on the formation of Au nanoclusters and on their evolution in nanoring structures on indium-tin-oxide surface by sputtering deposition and annealing processes. The quantification of the characteristics of the nanorings (surface density, depth, height, and width) is performed by atomic force microscopy. The possibility to control these characteristics by tuning annealing temperature and time is demonstrated establishing relations which allow to set the process parameters to obtain nanostructures of desired morphological properties for various technological applications. © 2011 American Institute of Physics.

PLASMON RESONANCEMaterials scienceNanostructureNanoringPhysics and Astronomy (miscellaneous)Annealing (metallurgy)NanotechnologySputter depositionAu; Nanoring; Atomic force microscopySettore ING-INF/01 - ElettronicaIndium tin oxideNanoclustersAtomic force microscopyNanolithographyITO THIN-FILMSSputteringGOLD NANOPARTICLESAuNanoring
researchProduct

Current status of AlInN layers lattice-matched to GaN for photonics and electronics

2007

We report on the current properties of Al1-x InxN (x approximate to 0.18) layers lattice- matched ( LM) to GaN and their specific use to realize nearly strain- free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state- of- the- art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of ( 1 - 5) x 10(18) cm(-3) and a large Stokes shift (similar to 800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified …

PhotoluminescenceMaterials scienceAcoustics and UltrasonicsGallium nitrideSettore ING-INF/01 - ElettronicaVertical-cavity surface-emitting laserchemistry.chemical_compoundMOLECULAR-BEAM EPITAXYALGAN/GAN QUANTUM-WELLSIII-VDISTRIBUTED BRAGG REFLECTORSCRYSTALSURFACE-EMITTING LASERSbusiness.industryREFLECTORSHeterojunctionOPTICAL-PROPERTIESCondensed Matter PhysicsAL1-XINXN THIN-FILMSSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDISTRIBUTED BRAGGAbsorption edgechemistryOptoelectronicsVAPOR-PHASE EPITAXYIII-V NITRIDESFIELD-EFFECT TRANSISTORSNITRIDESbusinessLiterature surveyCRYSTAL GALLIUM NITRIDELasing thresholdGALLIUM NITRIDEMolecular beam epitaxyJournal of Physics D: Applied Physics
researchProduct