Search results for "TRANSMEMBRANE PROTEIN"

showing 10 items of 186 documents

2016

Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as…

0301 basic medicineImmunoprecipitation030106 microbiologyImmunologyChromosomal translocationBiologyTransloconMicrobiologyTransmembrane proteinTransport proteinCell biology03 medical and health sciences030104 developmental biologyMembrane proteinVirologyparasitic diseasesProtein purificationGeneticsParasitologyProtein foldingMolecular BiologyPLOS Pathogens
researchProduct

Androgen-inducible gene 1 increases the ER Ca(2+) content and cell death susceptibility against oxidative stress.

2016

Androgen-induced gene 1 (AIG1) is a transmembrane protein implicated with survival (its expression level was shown to correlate with the survival of patients suffering from hepatocellular carcinoma) and Ca(2+) signaling (over-expression of AIG1 increased transcription mediated by the Ca(2+)-dependent nuclear factor of activated T cells). We aimed to shed light on this less-studied protein and investigated its tissue expression, genomic organization, intracellular localization and membrane topology as well as its effects on cell death susceptibility and the Ca(2+) content of the endoplasmic reticulum. Immunoblotting of mouse tissues demonstrated highest expression of AIG1 in the liver, lung …

0301 basic medicineMaleProgrammed cell deathGene ExpressionBiologyEndoplasmic Reticulum03 medical and health sciencesMiceProtein DomainsGene expressionGeneticsAnimalsSex CharacteristicsCell DeathEndoplasmic reticulumMembrane ProteinsGeneral MedicineEmbryo MammalianMolecular biologyTransmembrane proteinCell biologyMice Inbred C57BLTransmembrane domainCytosolAlternative SplicingOxidative Stress030104 developmental biologyMembrane proteinOrgan SpecificityMembrane topologyCalciumFemaleGene
researchProduct

Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells

2018

Aims/hypothesis: The Coxsackie and adenovirus receptor (CAR) is a transmembrane cell-adhesion protein that serves as an entry receptor for enteroviruses and may be essential for their ability to infect cells. Since enteroviral infection of beta cells has been implicated as a factor that could contribute to the development of type 1 diabetes, it is often assumed that CAR is displayed on the surface of human beta cells. However, CAR exists as multiple isoforms and it is not known whether all isoforms subserve similar physiological functions. In the present study, we have determined the profile of CAR isoforms present in human beta cells and monitored the subcellular localisation of the princi…

0301 basic medicineMaleviruksetEndocrinology Diabetes and MetabolismInsulin-Secreting CellsProtein IsoformsReceptorChildProinsulinEnterovirusMicroscopy ConfocalChemistryNuclear ProteinsImmunogold labellingMiddle AgedFlow CytometryImmunohistochemistryTransmembrane protein3. Good healthCell biologyEndocrinologieenteroviruksetMédecine interneProtein interacting with C-kinase 1 (PICK1)medicine.anatomical_structureChild PreschoolCoxsackievirus BFemalePancreasPICK1Gene isoformBeta cells; Coxsackie and adenovirus receptor; Coxsackievirus B; Enterovirus; Insulin granule; Pancreas; Protein interacting with C-kinase 1 (PICK1)AdultCoxsackie and Adenovirus Receptor-Like Membrane ProteinAdolescentImmunoprecipitationBlotting WesterninsuliiniArticle03 medical and health sciencesYoung AdultMétabolismeInternal MedicinemedicineHumansImmunoprecipitationPancreasCoxsackie and adenovirus receptorInsulin granuleDiabétologieBeta cellshaima030104 developmental biologyDiabetes Mellitus Type 1Carrier ProteinsDiabetologia
researchProduct

Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi.

2017

Abstract Background The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In additio…

0301 basic medicineMicrobiology (medical)Models Molecular030106 microbiologylcsh:QR1-502MicrobiologiaDown-RegulationGene ExpressionBiologyEndoplasmic ReticulumMicrobiologylcsh:MicrobiologyMicrobiology03 medical and health sciencesBacterial ProteinsStress PhysiologicalBorreliaInner membraneAmino Acid SequenceBorrelia burgdorferiAerotoleranceCell MembraneProteïnes de membranaMembrane ProteinsPeriplasmic spacebiology.organism_classificationbacterial infections and mycosesTransmembrane proteinTransmembraneCell biologyOxygenTransmembrane domainMembrane proteinBorrelia burgdorferivonWillebrand factor aMutationPeriplasmBacterial outer membraneSequence AlignmentResearch ArticleMIDAS motifBMC microbiology
researchProduct

Biological insertion of computationally designed short transmembrane segments

2016

The great majority of helical membrane proteins are inserted co-translationally into the ER membrane through a continuous ribosome-translocon channel. The efficiency of membrane insertion depends on transmembrane (TM) helix amino acid composition, the helix length and the position of the amino acids within the helix. In this work, we conducted a computational analysis of the composition and location of amino acids in transmembrane helices found in membrane proteins of known structure to obtain an extensive set of designed polypeptide segments with naturally occurring amino acid distributions. Then, using an in vitro translation system in the presence of biological membranes, we experimental…

0301 basic medicineModels MolecularBiologyEndoplasmic ReticulumArticleProtein Structure Secondary03 medical and health sciencesOrientations of Proteins in Membranes databaseMembranes (Biologia)Amino Acid SequenceIntegral membrane proteinMultidisciplinary030102 biochemistry & molecular biologyPeripheral membrane proteinCell MembraneProteïnes de membranaComputational BiologyMembrane ProteinsBiological membraneBiofísicaTransmembrane proteinTransmembrane domain030104 developmental biologyBiochemistryMembrane proteinHelixBiophysicsPeptidesScientific Reports
researchProduct

A Janus-Faced IM30 Ring Involved in Thylakoid Membrane Fusion Is Assembled from IM30 Tetramers.

2017

Summary Biogenesis and dynamics of thylakoid membranes likely involves membrane fusion events. Membrane attachment of the inner membrane-associated protein of 30 kDa (IM30) affects the structure of the lipid bilayer, finally resulting in membrane fusion. Yet, how IM30 triggers membrane fusion is largely unclear. IM30 monomers pre-assemble into stable tetrameric building blocks, which further align to form oligomeric ring structures, and differently sized IM30 rings bind to membranes. Based on a 3D reconstruction of IM30 rings, we locate the IM30 loop 2 region at the bottom of the ring and show intact membrane binding but missing fusogenic activity of loop 2 mutants. However, helix 7, which …

0301 basic medicineModels MolecularChemistryPeripheral membrane proteinLipid bilayer fusionBiological membraneMembrane FusionThylakoidsTransmembrane protein03 medical and health sciencesCrystallographyChloroplast Proteins030104 developmental biologyMembraneStructural BiologyMembrane biogenesisLiposomesBiophysicsProtein MultimerizationLipid bilayerMolecular BiologyIntegral membrane proteinProtein BindingStructure (London, England : 1993)
researchProduct

Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor

2017

Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal β-strand. We demonstrate that this contraction of t…

0301 basic medicineModels MolecularHistidine Kinase030106 microbiologyMolecular ConformationCitric Acid03 medical and health sciencesStructure-Activity RelationshipBacterial ProteinsPAS domainProtein Interaction Domains and MotifsAmino Acid SequenceHistidineMultidisciplinaryChemistryKinaseHistidine kinaseGeobacillusMembrane ProteinsBiological SciencesTransmembrane proteinCell biologyCytosolHelixSignal transductionProtein BindingSignal Transduction
researchProduct

2017

Studying folding and assembly of naturally occurring α-helical transmembrane proteins can inspire the design of membrane proteins with defined functions. Thus far, most studies have focused on the role of membrane-integrated protein regions. However, to fully understand folding pathways and stabilization of α-helical membrane proteins, it is vital to also include the role of soluble loops. We have analyzed the impact of interhelical loops on folding, assembly and stability of the heme-containing four-helix bundle transmembrane protein cytochrome b6 that is involved in charge transfer across biomembranes. Cytochrome b6 consists of two transmembrane helical hairpins that sandwich two heme mol…

0301 basic medicineMultidisciplinaryChemistryTransmembrane proteinFolding (chemistry)03 medical and health scienceschemistry.chemical_compoundTransmembrane domain030104 developmental biologyProtein structureMembrane proteinBiophysicsProtein foldingPeptide sequenceHemePLOS ONE
researchProduct

2018

Summary Directed transport of transmembrane proteins is generally believed to occur via intracellular transport vesicles. However, using single-particle tracking in rat hippocampal neurons with a pH-sensitive quantum dot probe that specifically reports surface movement of receptors, we have identified a subpopulation of neuronal EphB2 receptors that exhibit directed motion between synapses within the plasma membrane itself. This receptor movement occurs independently of the cytoskeleton but is dependent on cholesterol and is regulated by neuronal activity.

0301 basic medicineMultidisciplinaryChemistryVesicleMolecular neuroscienceHippocampal formationTransmembrane proteinCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineMembranePremovement neuronal activityReceptorCytoskeleton030217 neurology & neurosurgeryiScience
researchProduct

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct