Search results for "TUBES"

showing 10 items of 424 documents

Electrodeposition of CeO2 and Co-Doped CeO2 Nanotubes by Cyclic Anodization in Porous Alumina Membranes

2013

An anodic electrodeposition process is proposed to prepare CeO2 and Co-doped CeO2 nanotubes. Anodic alumina membrane is used as template and linear sweep voltammetry is employed to allow the formation of nanotubes without alumina dissolution. SEM micrographs showed large arrays of well defined and aligned NTs, which resulted to be crystalline soon after deposition according to XRD diffraction patterns and Raman Spectroscopy.

Fuel TechnologyMaterials scienceSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringAnodizingAlumina membranesMaterials ChemistryElectrochemistrynanotubes Electrodeposition anodic alumina membranePorosityCo dopedAlumina dissolution Anodic alumina membranes Anodic electrodeposition Anodizations Large arrays Linear sweep voltammetry Porous alumina membranes SEM micrographs
researchProduct

Carbon Nanostructures: Covalent and Macromolecular Chemistry

2012

The aim of this introductory chapter is to bring to the attention of the readers the achievements made in the chemistry of carbon nanostructures and, mostly, in the chemistry of fullerenes, carbon nanotubes (CNTs), and the most recent graphenes. Since the discovery of fullerenes in 1985 and their further preparation in multigram amounts, the chemistry and reactivity of these molecular carbon allotropes have been well established. Actually, this chemical reactivity has been used as a benchmark for further studies carried out in the coming carbon nanotubes (single and multiple wall) and graphenes. Assuming that the fundamental chemistry of fullerenes is known and basically corresponds to that…

Fullerene Nanotubes polymers synthesisSettore CHIM/06 - Chimica Organica
researchProduct

Carbon Nanotubes Conjugated with Triazole-Based Tetrathiafulvalene-Type Receptors for C60 Recognition

2019

Fullerene receptors prepared by a twofold CuI -catalyzed azide-alkyne cycloaddition (CuAAC) reaction with -extended tetrathiafulvalene (exTTF) have been covalently linked to singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). The nanoconjugates obtained were characterized by several analytical, spectroscopic and microscopic techniques (TEM, FTIR, Raman, TGA and XPS), and evaluated as C60 receptors by UV-Vis spectroscopy. The complexation between the exTTF-triazole receptor in the free state and C60 was also studied by UV-Vis and 1 H NMR titrations, and compared with analogous triazole-based tweezer-type receptors containing the electron-acceptor 11,11,12,12-t…

FullereneFULLERENEShost-guest interactionsTriazoleCarbon nanotubeCOMMUNICATIONConjugated systemHOSTS010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundsymbols.namesakeTCAQAZIDESlawCHEMISTRYAROMATICITYPHOTOINDUCED ELECTRON-TRANSFERcarbon nanotubes010405 organic chemistryCOMPLEXATIONQuímica orgánicaAromaticityEXTTFGeneral Chemistrypi-extended tetrathiafulvalenes0104 chemical sciencesCrystallographychemistrydensity functional calculationssymbolsDensity functional theoryRaman spectroscopyTetrathiafulvalene
researchProduct

Formation and transformation of carbon nanoparticles under electron irradiation.

2004

This article reviews the phenomena occurring during irradiation of graphitic nanoparticles with high–energy electrons. A brief introduction to the physics of the interaction between energetic electrons and solids is given with particular emphasis on graphitic materials. Irradiation effects are discussed, starting from microscopic mechanisms that lead to structural alterations of the graphite lattice. It is shown how random displacements of the atoms and their subsequent rearrangements eventually lead to topological changes of the nanoparticles. Examples are the formation of carbon onions, morphological changes of carbon nanotubes, or the coalescence of fullerenes or nanotubes under electron…

FullereneNanostructureMacromolecular SubstancesSurface PropertiesGeneral MathematicsMolecular ConformationGeneral Physics and AstronomyNanoparticleNanotechnologyBiocompatible MaterialsElectronsCarbon nanotubeengineering.materiallaw.inventionCondensed Matter::Materials SciencelawPhysics::Atomic and Molecular ClustersElectron beam processingElectrochemistryNanotechnologyGraphiteParticle SizeNanocompositeNanotubesNanotubes CarbonGeneral EngineeringDiamondEquipment DesignChemical engineeringengineeringCrystallizationPhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
researchProduct

Non-conventional methods and media for the activation and manipulation of carbon nanoforms

2013

Very often, chemical transformations require tedious and long procedures, which, sometimes, can be avoided using alternative methods and media. New protocols, enabling us to save time and solvents, allow us also to explore new reaction profiles. This Tutorial Review focuses on the physical and chemical behavior of carbon nanoforms, CNFs (fullerenes, nanotubes, nanohorns, graphene, etc.) when non-conventional methods and techniques, such as microwave irradiation, mechano-chemistry or highly ionizing radiations are employed. In addition, the reactivity of CNFs in non-conventional media such as water, fluorinated solvents, supercritical fluids, or ionic liquids is also discussed.

FullereneNanotubes Nanohorns Synthesis Microwave chemistry Ionic Liquidschemistry.chemical_elementIonic LiquidsNanotechnologylaw.inventionchemistry.chemical_compoundlawReactivity (chemistry)MicrowavesAlternative methodsGrapheneNanotubes Carboncarbon nanoforms non-conventional techniquesnon-conventional techniquesWaterGeneral ChemistrySettore CHIM/06 - Chimica OrganicaSupercritical fluidCarbonNanostructureschemistryGamma RaysIonic liquidMicrowave irradiationSolventsGraphitecarbon nanoformsCarbon
researchProduct

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

2016

In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young’s modulus using in situ electric-field-induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·104 nm2 to 7.8·104 nm2. Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young’s moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young’s modulus is observed for smaller thickness samples.

General Physics and AstronomyModulusYoung's modulusMechanical properties02 engineering and technologyBendingmechanical propertieslcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperlaw.inventionIn situlawNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Young’s modulusComposite materiallcsh:Science010302 applied physicsOptical properties021001 nanoscience & nanotechnologylcsh:QC1-999NanosciencenanowiressymbolsChemically deposited Sb2S3Strength0210 nano-technologyMaterials scienceThin filmsCellsNanowireCarbon nanotubesNanotechnologyCarbon nanotubeCrystalssymbols.namesakeCross section (physics)Antimony sulfide0103 physical sciencesSb2S3Mechanical resonanceElectrical and Electronic EngineeringArrayslcsh:TNanowiresin situResonanceantimony sulfidelcsh:Qlcsh:Physics
researchProduct

The diffusion of carbon atoms inside carbon nanotubes

2008

We combine electron irradiation experiments in a transmission electron microscope with kinetic Monte Carlo simulations to determine the mobility of interstitial carbon atoms in single-walled carbon nanotubes. We measure the irradiation dose necessary to cut nanotubes repeatedly with a focused electron beam as a function of the separation between the cuts and at different temperatures. As the cutting speed is related to the migration of displaced carbon atoms trapped inside the tube and to their recombination with vacancies, we obtain information about the mobility of the trapped atoms and estimate their migration barrier to be about 0.25 eV. This is an experimental confirmation of the remar…

General Physics and Astronomychemistry.chemical_elementMechanical properties of carbon nanotubes02 engineering and technologyCarbon nanotube114 Physical sciences01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials SciencePotential applications of carbon nanotubeslaw0103 physical sciencesElectron beam processingPhysics::Atomic Physics010306 general physicsCondensed Matter::Quantum GasesPhysicsCarbon nanofiber021001 nanoscience & nanotechnologyOptical properties of carbon nanotubeschemistryBallistic conduction in single-walled carbon nanotubesAtomic physics0210 nano-technologyCarbonNew Journal of Physics
researchProduct

Oviductal and endometrial mRNA expression of implantation candidate biomarkers during early pregnancy in rabbit

2013

[EN] Prenatal losses are a complex problem. Pregnancy requires orchestrated communication between the embryo and the uterus that includes secretions from the embryo to signal pregnancy recognition and secretion and remodelling from the uterine epithelium. Most of these losses are characterized by asynchronization between embryo and uterus. To better understand possible causes, an analysis was conducted of gene expression of a set of transcripts related to maternal recognition and establishment of rabbit pregnancy (uteroglobin, SCGB1A1; integrin 1, ITGA1; interferon- , IFNG; vascular endothelial growth factor, VEGF) in oviduct and uterine tissue at 16, 72 or 144 h post-ovulation and insemina…

Genetic MarkersMaleOvulationVascular Endothelial Growth Factor AUterusPRODUCCION ANIMALEndometriumAndrologyInterferon-gammachemistry.chemical_compoundEndometriumPregnancyGene expressionmedicineAnimalsUteroglobinFallopian TubesPregnancyRabbit.biologyUterusGene Expression Regulation DevelopmentalEmbryoCell BiologyOviductmedicine.diseaseImplantationVascular endothelial growth factormedicine.anatomical_structurechemistryUteroglobinbiology.proteinPregnancy AnimalOviductFemaleRabbitsBiomarkersDevelopmental Biology
researchProduct

Cluster Preface: Heterogeneous Catalysis

2016

International audience; Jean-Cyrille Hierso is full professor of Chemistry since 2009, heading the group of ‘Organometallic Chemistry and Catalysis’ at the Institute of Molecular Chemistry at the University of Bourgogne Franche-Comté (UBFC). He has interest in the fields of organometallic chemistry, ligand design, homo- and heterogeneous catalysis, chemical physics, and material sciences. In 2011 he was awarded the National Prize for Coordination Chemistry from the French Chemical Society (SCF), and at the end of 2012 he was elected a junior Member of the French Professors Academy ‘Institut Universitaire de France’ (IUF).Yasuhiro Uozumi is a full professor at the Institute for Molecular Sci…

Green chemistryMolecular chemistry010405 organic chemistryOrganic ChemistryLibrary scienceNanotechnology010402 general chemistryHeterogeneous catalysis01 natural sciencesMolecular science[ CHIM ] Chemical Sciences0104 chemical sciencesChemical societychemistry.chemical_compoundsustainable chemistry - nanocatalysts - organocatalysts - gold - palladium - nanoparticles - peptides - polymer supports - inorganic supports - nanotubes - epoxidation - esterification - cross-coupling - C–H functionalization - oxidation - (hetero)arenes - Kinetics - supramolecular assembly - recovery - recyclingchemistryTeam leader[CHIM]Chemical SciencesOrganometallic chemistry
researchProduct

Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications

2016

Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Ex…

Halloysite nanotubeAntiproliferative activity02 engineering and technology01 natural scienceshalloysite nanotubes covalent functionalization curcumin prodrugchemistry.chemical_compoundColloid and Surface ChemistryOrganic chemistryProdrugsProdrugSettore CHIM/02 - Chimica FisicaDrug CarriersNanotubesChemistryAntioxidant propertieFree Radical ScavengersSurfaces and InterfacesGeneral MedicineProdrug021001 nanoscience & nanotechnologyDrug deliveryAluminum Silicates0210 nano-technologyDrug carrierOxidation-ReductionBiotechnologyCurcuminCell SurvivalAntineoplastic AgentsHalloysite nanotubes Curcumin Prodrug Antiproliferative activity Antioxidant propertiesengineering.materialConjugated system010402 general chemistryHalloysiteCell Line TumorHumansPhysical and Theoretical ChemistryCell ProliferationSettore CHIM/06 - Chimica OrganicaCombinatorial chemistry0104 chemical sciencesKineticsMicroscopy Electron ScanningengineeringCurcuminSettore BIO/14 - FarmacologiaClayPharmaceuticsNanocarriers
researchProduct