Search results for "Toroid"

showing 10 items of 30 documents

Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory

2018

International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…

Particle physicsCERN LabPhysics::Instrumentation and DetectorsDark matterObservatoriesaxion: detector7. Clean energy01 natural sciencesCosmologyHigh Energy Physics::TheoryPrimakoff effectSensitivityWIMP0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionPrimakoff effectactivity reportPhysicsHelioscopeLarge Hadron Collider010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyToroidal magnetic fieldsDetectorsobservatory13. Climate actionCouplingsaxion-like particlesproposed experimentCERN Axion Solar Telescopeaxion: solarTelescopes
researchProduct

Nonadiabatic orientation, toroidal current, and induced magnetic field in BeO molecules.

2008

It is predicted that oriented BeO molecules would give rise to unprecedentedly strong, unidirectional electric ring current and an associated magnetic field upon excitation by a right or left circularly polarized laser pulse into the first excited degenerate singlet state. The strong toroidal electric ring current of this state is dominated by the ring current of the 1π± orbital about the molecular axis. Our predictions are based on the analysis of the orbital composition of the states involved and are substantiated by high level electronic structure calculations and wavepacket simulations of the laser-driven orientation and excitation dynamics. Luis.Serrano@uv.es

PhotoexcitationToroidMolecular electronic statesMolecule-photon collisionsMagnetic momentChemistryConfiguration interactionsExcited statesGeneral Physics and AstronomyElectronic structureMolecular orientationMagnetic fieldUNESCO::FÍSICA::Química físicaPhotoexcitationCoupled cluster calculationsBeryllium compoundsExcited stateMagnetic momentsPhysical and Theoretical ChemistryAtomic physics:FÍSICA::Química física [UNESCO]Beryllium compounds ; Configuration interactions ; Coupled cluster calculations ; Excited states ; Magnetic moments ; Molecular electronic states ; Molecular orientation ; Molecule-photon collisions ; PhotoexcitationRing currentExcitationThe Journal of chemical physics
researchProduct

General treatment of vortical, toroidal, and compression modes

2011

The multipole vortical, toroidal, and compression modes are analyzed. Following the vorticity concept of Ravenhall and Wambach, the vortical operator is derived and related in a simple way to the toroidal and compression operators. The strength functions and velocity fields of the modes are analyzed in $^{208}$Pb within the random-phase-approximation using the Skyrme force SLy6. Both convection and magnetization nuclear currents are taken into account. It is shown that the isoscalar (isovector) vortical and toroidal modes are dominated by the convection (magnetization) nuclear current while the compression mode is fully convective. The relation between the above concept of the vorticity to …

PhysicsConvectionNuclear and High Energy PhysicsToroidNuclear Theoryta114IsovectorIsoscalarNuclear TheoryFOS: Physical sciencesVorticityNuclear Theory (nucl-th)Physics::Fluid DynamicsClassical mechanicsCondensed Matter::SuperconductivityCompression (functional analysis)Quantum electrodynamicsNuclear Experiment (nucl-ex)Multipole expansionRandom phase approximationNuclear ExperimentPhysical Review C
researchProduct

Massless Spectra and Gauge Couplings at One-Loop on Non-Factorisable Toroidal Orientifolds

2018

So-called `non-factorisable' toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al., arXiv:1111.5852, provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum - and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes - and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the $\mathbb{Z}_4 \times…

PhysicsCouplingHigh Energy Physics - TheoryNuclear and High Energy PhysicsToroid010308 nuclear & particles physicsConformal field theoryFOS: Physical sciencesTorus01 natural sciencesMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Gauge groupOrientifoldQuantum electrodynamics0103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityInvariant (mathematics)010306 general physicsMathematical physics
researchProduct

A study of the potential influence of frame coolant on HCLL-TBM nuclear response

2007

Abstract Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a long term fusion reactor, in particular with the aim of manufacturing a test blanket module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel-supporting frame, actively cooled by pressurized water. This supporting frame has been designed to house two different TBMs providing two cavities separated by a dividing plate 20 cm thick. As the nuclear response of HCLL-TBM could vary with the supporting frame configuration and composition, a parametric st…

PhysicsCryostatToroidMechanical EngineeringNuclear engineeringNeutronicFrame (networking)HCLL-TBMBlanketFusion powerCoolantNuclear physicsMonte Carlo methodNuclear Energy and EngineeringITERNeutron sourceGeneral Materials ScienceSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statistics
researchProduct

Transition to turbulence in toroidal pipes

2011

AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm…

PhysicsHopf bifurcationTurbulenceMechanical EngineeringReynolds numberTorusMechanicstransition to turbulence periodic flow quasi-periodic flow computational fluid dynamics curved pipe toroidal pipeCondensed Matter PhysicsSecondary flowVortexVortex ringsymbols.namesakeMechanics of MaterialsIncompressible flowsymbolsSettore ING-IND/19 - Impianti NucleariJournal of Fluid Mechanics
researchProduct

Towards a direct measurement of the g-factor of a single isolated protonThis paper was presented at the International Conference on Precision Physics…

2011

Our Penning trap experiment aims at a direct high-precision measurement of the proton g-factor. We present the experimental setup and the measurement technique using the continuous Stern-Gerlach effect. Recent test measurements with a single proton stored in a Penning trap with a strong magnetic bottle and a new toroidal detection system are discussed. For a stringent test of the CPT symmetry the described technique can also be applied to the antiproton.

PhysicsNuclear physicsToroidProtonAntiprotonCPT symmetryPhysics::Atomic and Molecular ClustersMeasure (physics)General Physics and AstronomyPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentPenning trapCanadian Journal of Physics
researchProduct

Multi-field, multi-frequency bosonic stars and a stabilization mechanism

2021

Scalar bosonic stars (BSs) stand out as a multi-purpose model of exotic compact objects. We enlarge the landscape of such (asymptotically flat, stationary, everywhere regular) objects by considering multiple fields (possibly) with different frequencies. This allows for new morphologies ${\it and}$ a stabilization mechanism for different sorts of unstable BSs. First, any odd number of complex fields, yields a continuous family of BSs departing from the spherical, equal frequency, $\ell-$BSs. As the simplest illustration, we construct the $\ell$ = ${\it 1}$ ${\it BSs}$ ${\it family}$, that includes several single frequency solutions, including even parity (such as spinning BSs and a toroidal,…

PhysicsToroidField (physics)Scalar (mathematics)FOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesStability (probability)General Relativity and Quantum CosmologyStarsNonlinear systemTheoretical physicsDipole0103 physical sciences010306 general physicsParity bit
researchProduct

Dynamics of magnetized relativistic tori oscillating around black holes

2007

We present a numerical study of the dynamics of magnetized, relativistic, non-self-gravitating, axisymmetric tori orbiting in the background spacetimes of Schwarzschild and Kerr black holes. The initial models have a constant specific angular momentum and are built with a non-zero toroidal magnetic field component, for which equilibrium configurations have recently been obtained. In this work we extend our previous investigations which dealt with purely hydrodynamical thick discs, and study the dynamics of magnetized tori subject to perturbations which, for the values of the magnetic field strength considered here, trigger quasi-periodic oscillations lasting for tens of orbital periods. Ove…

PhysicsToroidGravitational waveOscillationAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsTorusGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysicsSpecific relative angular momentumGeneral Relativity and Quantum CosmologyGalaxyMagnetic fieldSpace and Planetary ScienceQuantum electrodynamicsSchwarzschild radiusMonthly Notices of the Royal Astronomical Society
researchProduct

Quantum simulations of toroidal electric ring currents and magnetic fields in linear molecules induced by circularly polarized laser pulses

2008

Circularly polarized laser pulses may excite state selective unidirectional toroidal electric ring currents around the axis of oriented linear molecules. These in turn induce state selective magnetic fields. Quantum simulations for AlCl show that these effects are about one or even more than three orders of magnitudes larger than those which may be prepared in oriented planar molecules such as Mg-porphyrin, by means of either circularly polarized laser pulses, or by traditional magnetic fields, respectively.

PhysicsToroidMagnetic circular dichroismGeneral Physics and AstronomyLinear molecular geometryLaserlaw.inventionMagnetic fieldPlanarX-ray magnetic circular dichroismlawPhysical and Theoretical ChemistryAtomic physicsQuantumChemical Physics
researchProduct