Search results for "Toroid"
showing 10 items of 30 documents
Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory
2018
International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…
Nonadiabatic orientation, toroidal current, and induced magnetic field in BeO molecules.
2008
It is predicted that oriented BeO molecules would give rise to unprecedentedly strong, unidirectional electric ring current and an associated magnetic field upon excitation by a right or left circularly polarized laser pulse into the first excited degenerate singlet state. The strong toroidal electric ring current of this state is dominated by the ring current of the 1π± orbital about the molecular axis. Our predictions are based on the analysis of the orbital composition of the states involved and are substantiated by high level electronic structure calculations and wavepacket simulations of the laser-driven orientation and excitation dynamics. Luis.Serrano@uv.es
General treatment of vortical, toroidal, and compression modes
2011
The multipole vortical, toroidal, and compression modes are analyzed. Following the vorticity concept of Ravenhall and Wambach, the vortical operator is derived and related in a simple way to the toroidal and compression operators. The strength functions and velocity fields of the modes are analyzed in $^{208}$Pb within the random-phase-approximation using the Skyrme force SLy6. Both convection and magnetization nuclear currents are taken into account. It is shown that the isoscalar (isovector) vortical and toroidal modes are dominated by the convection (magnetization) nuclear current while the compression mode is fully convective. The relation between the above concept of the vorticity to …
Massless Spectra and Gauge Couplings at One-Loop on Non-Factorisable Toroidal Orientifolds
2018
So-called `non-factorisable' toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al., arXiv:1111.5852, provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum - and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes - and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the $\mathbb{Z}_4 \times…
A study of the potential influence of frame coolant on HCLL-TBM nuclear response
2007
Abstract Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a long term fusion reactor, in particular with the aim of manufacturing a test blanket module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel-supporting frame, actively cooled by pressurized water. This supporting frame has been designed to house two different TBMs providing two cavities separated by a dividing plate 20 cm thick. As the nuclear response of HCLL-TBM could vary with the supporting frame configuration and composition, a parametric st…
Transition to turbulence in toroidal pipes
2011
AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm…
Towards a direct measurement of the g-factor of a single isolated protonThis paper was presented at the International Conference on Precision Physics…
2011
Our Penning trap experiment aims at a direct high-precision measurement of the proton g-factor. We present the experimental setup and the measurement technique using the continuous Stern-Gerlach effect. Recent test measurements with a single proton stored in a Penning trap with a strong magnetic bottle and a new toroidal detection system are discussed. For a stringent test of the CPT symmetry the described technique can also be applied to the antiproton.
Multi-field, multi-frequency bosonic stars and a stabilization mechanism
2021
Scalar bosonic stars (BSs) stand out as a multi-purpose model of exotic compact objects. We enlarge the landscape of such (asymptotically flat, stationary, everywhere regular) objects by considering multiple fields (possibly) with different frequencies. This allows for new morphologies ${\it and}$ a stabilization mechanism for different sorts of unstable BSs. First, any odd number of complex fields, yields a continuous family of BSs departing from the spherical, equal frequency, $\ell-$BSs. As the simplest illustration, we construct the $\ell$ = ${\it 1}$ ${\it BSs}$ ${\it family}$, that includes several single frequency solutions, including even parity (such as spinning BSs and a toroidal,…
Dynamics of magnetized relativistic tori oscillating around black holes
2007
We present a numerical study of the dynamics of magnetized, relativistic, non-self-gravitating, axisymmetric tori orbiting in the background spacetimes of Schwarzschild and Kerr black holes. The initial models have a constant specific angular momentum and are built with a non-zero toroidal magnetic field component, for which equilibrium configurations have recently been obtained. In this work we extend our previous investigations which dealt with purely hydrodynamical thick discs, and study the dynamics of magnetized tori subject to perturbations which, for the values of the magnetic field strength considered here, trigger quasi-periodic oscillations lasting for tens of orbital periods. Ove…
Quantum simulations of toroidal electric ring currents and magnetic fields in linear molecules induced by circularly polarized laser pulses
2008
Circularly polarized laser pulses may excite state selective unidirectional toroidal electric ring currents around the axis of oriented linear molecules. These in turn induce state selective magnetic fields. Quantum simulations for AlCl show that these effects are about one or even more than three orders of magnitudes larger than those which may be prepared in oriented planar molecules such as Mg-porphyrin, by means of either circularly polarized laser pulses, or by traditional magnetic fields, respectively.