Search results for "Transverse plane"
showing 10 items of 285 documents
2019
Abstract The transverse spin asymmetries measured in semi-inclusive leptoproduction of hadrons, when weighted with the hadron transverse momentum P T , allow for the extraction of important transverse-momentum-dependent distribution functions. In particular, the weighted Sivers asymmetries provide direct information on the Sivers function, which is a leading-twist distribution that arises from a correlation between the transverse momentum of an unpolarised quark in a transversely polarised nucleon and the spin of the nucleon. Using the high-statistics data collected by the COMPASS Collaboration in 2010 with a transversely polarised proton target, we have evaluated two types of P T -weighted…
Polar angle dependence of the longitudinal polarization of quarks produced in e + e - -annihilation
1997
We calculate one-loop radiative QCD corrections to the three polarized and unpolarized structure functions that determine the beam-quark polar angle dependence of the longitudinal polarization of light and heavy quarks produced in e+e−-annihilations. We present analytical and numerical results for the longitudinal polarization and its polar angle dependence. We discuss in some detail the zero-mass limit of our results and the role of the anomalous spin-flip contributions to the polarization observables in the zero-mass limit. Our discussion includes transverse and longitudinal beam polarization effects.
First measurement of the charge asymmetry in beauty-quark pair production.
2014
The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b[bar over b] pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0 fb[superscript −1] collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b[bar over b] system. The results obtained are A[b[bar over b] over C](40 105 GeV/c[superscript 2]) = 1.6 ± 1.7 ± 0.6%, where A[b[bar over b] over C] is defined as the asymmetry in the difference in rapidity between jets formed from the beauty q…
Shaded-Mask Filtering for Extended Depth-of-Field Microscopy
2013
This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical architecture. In the filter design, we have used the analogy between the axial behavior of a system with spherical aberration and the transverse impulse response of a 1D defocused system. This allowed us the…
Haldane Model at finite temperature
2019
We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…
Anderson localization problem: An exact solution for 2-D anisotropic systems
2007
Our previous results [J.Phys.: Condens. Matter 14 (2002) 13777] dealing with the analytical solution of the two-dimensional (2-D) Anderson localization problem due to disorder is generalized for anisotropic systems (two different hopping matrix elements in transverse directions). We discuss the mathematical nature of the metal-insulator phase transition which occurs in the 2-D case, in contrast to the 1-D case, where such a phase transition does not occur. In anisotropic systems two localization lengths arise instead of one length only.
Chromospheric evaporation and phase mixing of Alfvén waves in coronal loops
2020
Phase mixing of Alfv\'en waves has been studied extensively as a possible coronal heating mechanism but without the full thermodynamic consequences considered self-consistently. It has been argued that in some cases, the thermodynamic feedback of the heating could substantially affect the transverse density gradient and even inhibit the phase mixing process. In this paper, we use MHD simulations with the appropriate thermodynamical terms included to quantify the evaporation following heating by phase mixing of Alfv\'en waves in a coronal loop and the effect of this evaporation on the transverse density profile. The numerical simulations were performed using the Lare2D code. We set up a 2D l…
Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect
2006
A shape-dependent superconducting resonance can be expected when an energy level associated with the transverse motion in a wire passes through the Fermi surface. We show that the recently observed width-dependent increase of ${T}_{c}$ in Al and Sn nanowires is a consequence of this shape-resonance effect.
Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams
2017
Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation. Here, we use a non-diffracting beam engineered to have a transverse elliptical spatial profile to generate high aspect ratio elliptical channels in glass of dimension 350 nm x 710 nm, and subsequent cleaved surface uniformity at the sub-micron level.
Frequency doubling in surface periodically poled lithium niobate waveguides: Competing effects
2007
We fabricated α-phase pro ton-exchanged (PE) lithium niobate (LN) channel waveguides quasi phase-matched (QPM) via surface periodic poling (SPP) and carried out the first experimental demonstration of second harmonic generation (SHG) in such devices.[1] Experiments were performed by employing an optical parametric amplifier/oscillator producing 25 ps pulses in the range 1.1-1.6 μm with a line-width less than 2cm−1 and a repetition rate of 10Hz. SHG measurements were performed either at a fixed wavelength by varying the fundamental frequency (FF) input power or by scanning the FF wavelength, ratioing the second harmonic (SH) output to the FF input to obtain the conversion efficiency. By repe…