Search results for "Ultrafast"

showing 10 items of 170 documents

Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals

2017

Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications. Previous measurements had shown that LHCII bound to QD can transfer its excitation energy to the latter, as indicated by the fluorescence emissions of LHCII and QD being quenched and sensitized, respectively. In the presence of methyl viologen (MV), both fluorescence emissions are quenched…

ChlorophyllParaquatPhotosynthetic reaction centreMaterials scienceAbsorption spectroscopyLight-Harvesting Protein ComplexesBiophysics02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesBiochemistryElectron TransportLight-harvesting complexElectron transferQuantum DotsUltrafast laser spectroscopyFluorescence Resonance Energy TransferAction spectrumPeasPhotosystem II Protein ComplexCell Biology021001 nanoscience & nanotechnologyFluorescence0104 chemical sciencesSemiconductorsQuantum dotNanoparticles0210 nano-technologyBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Bidentate pyridyl‐NHC ligands: synthesis, ground and excited state properties of their iron(II) complexes and role of the fac/mer isomerism

2021

International audience; Iron complexes are promising candidates for the development of sustainable molecular photoactive materials as an alternative to those based on precious metals such as Ir, Pt or Ru. These compounds possess metal-ligand charge transfer (MLCT) transitions potentially of high interest for energy conversion or photocatalysis applications if the ultrafast deactivation via lower-lying metal-centred (MC) states can be impeded. Following an introduction describing the main design strategies used so far to increase the MLCT lifetimes, we review some of our latest contributions to the field regarding bidentate Fe(II) complexes comprising N-heterocyclic carbene ligands. The disc…

Computational chemistryDenticity010405 organic chemistryChemistryIronBidentate ligands[CHIM.COOR] Chemical Sciences/Coordination chemistry010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryExcited state[CHIM.COOR]Chemical Sciences/Coordination chemistryCarbene ligandsUltrafast spectroscopy
researchProduct

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

2022

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

Condensed Matter - Materials ScienceMultidisciplinarynonlinear opticsphononsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::OpticsElectron-phonon couplingSettore FIS/03 - Fisica Della Materiaultrafast spectroscopypump-robe spectroscopyPhysics::Atomic and Molecular ClustersHHGOptics (physics.optics)Physics - Optics
researchProduct

Brownian reservoir computing realized using geometrically confined skyrmion dynamics

2022

AbstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated a…

Condensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsMultidisciplinary530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530 PhysikGeneral Biochemistry Genetics and Molecular Biology
researchProduct

Controlling magnetism with light in zero orbital angular momentum antiferromagnet

2023

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin …

Condensed Matter - Other Condensed MatterCondensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsSpectroscopy of Solids and InterfacesQuímica organometàl·licaGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated ElectronsMaterialsOther Condensed Matter (cond-mat.other)
researchProduct

Ultrafast Metamorphosis of a Complex Charge Density Wave in Tantalumdiselenite

2016

Using ultrafast electron diffraction, we record the transformation between a nearly-commensurate and an incommensurate charge-density-wave in 1T-TaS2, which takes place orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions.

Condensed Matter::Quantum GasesDiffractionPhysicsOrders of magnitude (temperature)Ultrafast electron diffractionmedia_common.quotation_subjectPhysics::OpticsCondensed Matter::SuperconductivityElectric fieldCondensed Matter::Strongly Correlated ElectronsAtomic physicsTime-resolved spectroscopyMetamorphosisCharge density waveUltrashort pulsemedia_commonInternational Conference on Ultrafast Phenomena
researchProduct

Ultrafast Metamorphosis of a Complex Charge-Density Wave

2015

Modulated phases, commensurate or incommensurate with the host crystal lattice, are ubiquitous in solids. The transition between such phases involves formation and rearrangement of domain walls and is generally slow. Using ultrafast electron diffraction, we directly record the photoinduced transformation between a nearly commensurate and an incommensurate charge-density-wave phase in 1T-TaS(2). The transformation takes place on the picosecond time scale, orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions. The transition speed and mechanism can be linked to the peculiar nanoscale structure of the photoexcited nearly commensurate phase.

Condensed Matter::Quantum GasesMaterials scienceCondensed matter physicsUltrafast electron diffractionGeneral Physics and Astronomy02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesOrders of magnitude (time)Condensed Matter::SuperconductivityPicosecondPhase (matter)0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyNanoscopic scaleUltrashort pulseCharge density wavePhysical Review Letters
researchProduct

Luminescence center excited state absorption in tungstates

2001

The excited state absorption of intrinsic luminescence center (self-trapped exciton) in tungstates (CaWO4, ZnWO4, PbWO4 and CdWO4) was studied. The transient absorption and luminescence spectra, decay kinetics and lifetime dependencies on temperature have been measured. The model of self-trapped exciton and nature of observed absorption bands were discussed.

Condensed Matter::Quantum GasesPhotoluminescenceAbsorption spectroscopyPhysics::Instrumentation and DetectorsCondensed Matter::OtherChemistryExcitonBiophysicsGeneral ChemistryCondensed Matter PhysicsBiochemistryAtomic and Molecular Physics and OpticsCondensed Matter::Materials Sciencechemistry.chemical_compoundTungstateExcited stateUltrafast laser spectroscopyAtomic physicsLuminescenceAbsorption (electromagnetic radiation)Journal of Luminescence
researchProduct

Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing.

2010

The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high-level ab initio CASPT2 calculations of the singlet- and triplet-state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin-orbit coupling terms. The initially populated singlet pi pi* state is shown to decay through internal conversion and intersystem crossing processes via intermediate n pi* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversio…

Conical intersectionsChemistryTransition statesQuantum yieldInternal conversion (chemistry)Atomic and Molecular Physics and OpticsPhotophysicsIntersystem crossingExcited stateddc:540Solvent effectsUltrafast laser spectroscopySinglet fissionAb initio calculationsSinglet statePhysical and Theoretical ChemistryAtomic physicsTriplet stateChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

Radiation defects in undoped and Nd‐doped LaGaO 3 crystals

2005

Radiation induced defects have been studied in undoped and Nd-doped (6 mol% and 12 mol%) LaGaO3 crystals. Wide absorption band (2.2–2.8 eV) was observed after crystal irradiation with X-rays at 300 K. Induced defects have been annealed in air at ∼450 K. Similar absorption band was observed in transient absorption spectra after ns-pulsed electron beam excitation. The radiation defect creation efficiency is higher in undoped LaGaO3 crystal. It is shown that small concentration of Nd-doping increases the LaGaO3 crystal radiation hardness. In transient absorption spectra along with 2.7 eV band the absorption bands at 1.5 eV and 2.2 eV were observed. The decay process of transient absorption has…

CrystalAbsorption bandChemistryUltrafast laser spectroscopyDopingAnalytical chemistryIrradiationAtomic physicsAbsorption (electromagnetic radiation)LuminescenceSpectral linephysica status solidi (c)
researchProduct