Search results for "VECTOR"

showing 10 items of 2660 documents

DeepEva: A deep neural network architecture for assessing sentence complexity in Italian and English languages

2021

Abstract Automatic Text Complexity Evaluation (ATE) is a research field that aims at creating new methodologies to make autonomous the process of the text complexity evaluation, that is the study of the text-linguistic features (e.g., lexical, syntactical, morphological) to measure the grade of comprehensibility of a text. ATE can affect positively several different contexts such as Finance, Health, and Education. Moreover, it can support the research on Automatic Text Simplification (ATS), a research area that deals with the study of new methods for transforming a text by changing its lexicon and structure to meet specific reader needs. In this paper, we illustrate an ATE approach named De…

Artificial intelligenceComputer engineering. Computer hardwareText simplificationComputer scienceText simplificationcomputer.software_genreLexiconAutomatic-text-complexity-evaluationDeep-learningField (computer science)TK7885-7895Automatic text copmplexity evaluationText-complexity-assessmentText complexity assessmentStructure (mathematical logic)Settore INF/01 - InformaticaText-simplificationbusiness.industryDeep learningNatural language processingNatural-language-processingDeep learningGeneral MedicineQA75.5-76.95Artificial-intelligenceSupport vector machineElectronic computers. Computer scienceGradient boostingArtificial intelligencebusinesscomputerSentenceNatural language processingArray
researchProduct

Neural Networks as Soft Sensors: a Comparison in a Real World Application.

2006

Physical atmosphere parameters, as temperature or humidity, can be indirectly estimated on the surface of a monument by means of soft sensors based on neural networks, if an ambient air monitoring station works in the neighborhood of the monument itself. Since the soft sensors work as virtual instruments, the accuracy of such measurements has to be analyzed and validated from statistical and metrological points of view. The paper compares different typologies of neural networks, which can be used as soft sensors in a complex real world application: a non invasive monitoring of the conservation state of old monuments. In this context, several designed connessionistic systems, based on radial…

Artificial neural networkComputer scienceEstimation theoryEstimatorHumidityContext (language use)computer.software_genreSoft sensorDomain (software engineering)Support vector machineRadial basis functionData miningcomputerSimulationThe 2006 IEEE International Joint Conference on Neural Network Proceedings
researchProduct

A Study of Perceptron Mapping Capability to Design Speech Event Detectors

2006

Event detection is a fundamental yet critical component in automatic speech recognition (ASR) systems that attempt to extract knowledge-based features at the front-end level. In this context, it is common practice to design the detectors inside well-known frameworks based on artificial neural network (ANN) or support vector machine (SVM). In the case of ANN, speech scientists often design their detector architecture relying on conventional feed-forward multi-layer perceptron (MLP) with sigmoidal activation function. The aim of this paper is to introduce other ANN architectures inside the context of detection-based ASR. In particular, a bank of feed-forward MLPs using sinusoidal activation f…

Artificial neural networkComputer scienceEvent (computing)business.industrySpeech recognitionComputer Science::Neural and Evolutionary ComputationContext (language use)Pattern recognitionspeech segmentationPerceptronSpeech segmentationSupport vector machineComputer Science::SoundSpeechDetection theoryArtificial intelligencerecognitionHidden Markov modelbusiness
researchProduct

Fall Detection Based on the Instantaneous Doppler Frequency : A Machine Learning Approach

2019

Modern societies are facing an ageing problem which comes with increased cost of healthcare. A major share of this ever-increasing cost is due to fall related injuries, which urges the development of fall detection systems. In this context, this paper paves the way for building of a radio-frequency-based fall detection system. This paper presents an activity simulator that generates the complex channel gain of indoor channels in the presence of one person performing three different activities, namely, slow fall, fast fall, and walking. We built a machine learning framework for activity recognition based on the complex channel gain. We assess the recognition accuracy of three different class…

Artificial neural networkComputer sciencebusiness.industryDecision tree020206 networking & telecommunicationsContext (language use)02 engineering and technologyMachine learningcomputer.software_genreVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420Support vector machineActivity recognitionStatistical classificationDoppler frequency0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingFall detectionArtificial intelligencebusinesscomputerVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct

Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines

2020

The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…

Artificial neural networkComputer sciencebusiness.industryDeep learning0206 medical engineeringDecision treeSampling (statistics)02 engineering and technologyMachine learningcomputer.software_genreThresholdingSupport vector machinePattern recognition (psychology)0202 electrical engineering electronic engineering information engineeringFeature (machine learning)020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer020602 bioinformatics2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks

2021

In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …

Artificial neural networkComputer sciencebusiness.industryDeep learningPattern recognitionDelayed enhancementmedicine.diseaseSupport vector machineClinical informationcardiovascular systemmedicineLeft ventricular cavitySegmentationcardiovascular diseasesMyocardial infarctionArtificial intelligencebusiness
researchProduct

Integrating genomic binding site predictions using real-valued meta classifiers

2008

Currently the best algorithms for predicting transcription factor binding sites in DNA sequences are severely limited in accuracy. There is good reason to believe that predictions from different classes of algorithms could be used in conjunction to improve the quality of predictions. In this paper, we apply single layer networks, rules sets, support vector machines and the Adaboost algorithm to predictions from 12 key real valued algorithms. Furthermore, we use a ‘window’ of consecutive results as the input vector in order to contextualise the neighbouring results. We improve the classification result with the aid of under- and over-sampling techniques. We find that support vector machines …

Artificial neural networkComputer sciencebusiness.industryMachine learningcomputer.software_genreDNA binding siteSupport vector machineArtificial IntelligenceArtificial intelligenceAdaBoostPrecision and recallbusinessClassifier (UML)computerSoftwareNeural Computing and Applications
researchProduct

Pose classification using support vector machines

2000

In this work a software architecture is presented for the automatic recognition of human arm poses. Our research has been carried on in the robotics framework. A mobile robot that has to find its path to the goal in a partially structured environment can be trained by a human operator to follow particular routes in order to perform its task quickly. The system is able to recognize and classify some different poses of the operator's arms as direction commands like "turn-left", "turn-right", "go-straight", and so on. A binary image of the operator silhouette is obtained from the gray-level input. Next, a slice centered on the silhouette itself is processed in order to compute the eigenvalues …

Artificial neural networkCovariance matrixbusiness.industryComputer scienceBinary imagePattern recognitionMobile robotSilhouetteSupport vector machineOperator (computer programming)Gesture recognitionComputer visionArtificial intelligencebusinessEigenvalues and eigenvectorsProceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium
researchProduct

Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping

2016

The choice of the proper resolution in landslide susceptibility mapping is a worth considering issue. If, on the one hand, a coarse spatial resolution may describe the terrain morphologic properties with low accuracy, on the other hand, at very fine resolutions, some of the DEM-derived morphometric factors may hold an excess of details. Moreover, the landslide inventory maps are represented throughout geospatial vector data structure, therefore a conversion procedure vector-to-raster is required.This work investigates the effects of raster resolution on the susceptibility mapping in conjunction with the use of different algorithms of vector-raster conversion. The Artificial Neural Network t…

Artificial neural networkResamplingEnvironmental EngineeringGeospatial analysis010504 meteorology & atmospheric sciencesComputer scienceArtificial neural network; Grid-cell size; Landslide susceptibility mapping; Resampling; Vector-to-raster conversion; Ecological Modeling; Environmental Engineering; Software0208 environmental biotechnologyComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONTerrain02 engineering and technologycomputer.software_genre01 natural sciencesArray data structureGrid-cell sizeImage resolutionLandslide susceptibility mapping0105 earth and related environmental sciencesArtificial neural networkEcological ModelingSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaVector-to-raster conversionLandslidecomputer.file_format020801 environmental engineeringPolygonRaster graphicscomputerAlgorithmSoftwareEnvironmental Modelling & Software
researchProduct

Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine

2020

The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …

Artificial neural networkbusiness.industryComputer science0206 medical engineeringDecision tree02 engineering and technologyIntrusion detection systemMachine learningcomputer.software_genreRandom forestSupport vector machineStatistical classificationKnowledge extraction0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer020602 bioinformaticsInterpretability2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct