Search results for "Variant"

showing 10 items of 1267 documents

Deflation-Based FastICA With Adaptive Choices of Nonlinearities

2014

Deflation-based FastICA is a popular method for independent component analysis. In the standard deflation-base d approach the row vectors of the unmixing matrix are extracted one after another always using the same nonlinearities. In prac- tice the user has to choose the nonlinearities and the efficiency and robustness of the estimation procedure then strongly depends on this choice as well as on the order in which the components are extracted. In this paper we propose a novel adaptive two- stage deflation-based FastICA algorithm that (i) allows one to use different nonlinearities for different components and (ii) optimizes the order in which the components are extracted. Based on a consist…

Mathematical optimizationta112Asymptotic distribution020206 networking & telecommunications02 engineering and technology01 natural sciencesIndependent component analysis010104 statistics & probabilityNonlinear systemRobustness (computer science)Signal Processing0202 electrical engineering electronic engineering information engineeringFastICAEquivariant mapAffine transformation0101 mathematicsElectrical and Electronic EngineeringAlgorithmFinite setMathematicsIEEE Transactions on Signal Processing
researchProduct

Invariant distributions, Beurling transforms and tensor tomography in higher dimensions

2014

In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…

Mathematics - Differential GeometryBeurling transformDynamical Systems (math.DS)invariant distributionsMathematics::Geometric Topologymanifoldsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematicstensor tomographyMathematics::Differential GeometryMathematics - Dynamical Systemsmath.APmath.DSAnalysis of PDEs (math.AP)
researchProduct

An index formula on manifolds with fibered cusp ends

2002

We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of t…

Mathematics - Differential GeometryCusp (singularity)Pure mathematics58J40 58J20 58J28Boundary (topology)Fibered knotCohomologyManifoldEta invariantOperator (computer programming)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsFiber bundleGeometry and TopologyMathematics
researchProduct

Algebraic models of the Euclidean plane

2018

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.

Mathematics - Differential GeometryPure mathematicsaffine complexificationLogarithmReal algebraic model01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesEuclidean geometryAlgebraic surfaceaffine surfaceFOS: Mathematics0101 mathematicsInvariant (mathematics)Algebraic numberMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)MathematicsAlgebra and Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]q-homology planesbirational diffeomorphismDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]rational fibrationPairwise comparison010307 mathematical physicsGeometry and TopologyDiffeomorphism[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R05 14R25 14E05 14P25 14J26[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Singular homology
researchProduct

Symplectic Applicability of Lagrangian Surfaces

2009

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equa- tions. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.

Mathematics - Differential GeometryPure mathematicsdifferential invariantsSymplectic vector spaceFOS: MathematicsSymplectomorphismMoment mapMathematics::Symplectic GeometryMathematical PhysicsMathematicsSymplectic manifoldapplicabilityLagrangian surfaceslcsh:MathematicsMathematical analysisSymplectic representationmoving frameslcsh:QA1-939Symplectic matrixaffine symplectic geometryAffine geometry of curvesDifferential Geometry (math.DG)Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.Geometry and TopologyAnalysisSymplectic geometry
researchProduct

Transport equations and quasi-invariant flows on the Wiener space

2010

Abstract We shall investigate on vector fields of low regularity on the Wiener space, with divergence having low exponential integrability. We prove that the vector field generates a flow of quasi-invariant measurable maps with density belonging to the space L log L . An explicit expression for the density is also given.

Mathematics(all)General MathematicsMathematical analysisIntegral representation theorem for classical Wiener spaceMalliavin calculusDensity estimationSpace (mathematics)Quasi-invariant flowsDivergenceCommutator estimateFlow (mathematics)Transport equationsWiener spaceClassical Wiener spaceVector fieldInvariant (mathematics)MathematicsBulletin des Sciences Mathématiques
researchProduct

Invariant Jordan curves of Sierpinski carpet rational maps

2015

In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.

Mathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]rational functionsMathematics::General TopologyDynamical Systems (math.DS)01 natural sciences37F10Combinatoricsexpanding Thusrston mapssymbols.namesakeHigh Energy Physics::TheoryMathematics::Quantum AlgebraFOS: MathematicsMathematics::Metric GeometryMathematics - Dynamical Systems0101 mathematicsInvariant (mathematics)MathematicsmatematiikkamathematicsSierpinski carpet Julia setsApplied Mathematicsta111010102 general mathematicsinvariant Jordan curveJulia setJordan curve theoremrationaalifunktiot010101 applied mathematicsrational mapsSierpinski carpetsymbols
researchProduct

Bounded compositions on scaling invariant Besov spaces

2012

For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.

Mathematics::Functional AnalysisQuasiconformal mappingPure mathematics46E35 30C65 47B33Function spaceComposition operator010102 general mathematicsta11116. Peace & justiceTriebel–Lizorkin space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsBesov space010307 mathematical physics0101 mathematicsInvariant (mathematics)ScalingAnalysisMathematicsJournal of Functional Analysis
researchProduct

Blow-up of the non-equivariant 2+1 dimensional wave map

2014

It has been known for a long time that the equivariant 2+1 wave map into the 2-sphere blows up if the initial data are chosen appropriately. Here, we present numerical evidence for the stability of the blow-up phenomenon under explicit violations of equivariance.

Mathematics::K-Theory and HomologyMathematical analysisOne-dimensional spaceMathematics::Analysis of PDEsEquivariant mapGeneral MedicineStability (probability)Mathematics::Algebraic TopologyMathematical PhysicsMathematics35L67 35L70 65M20 65P10 74H35
researchProduct

Cohomology and associated deformations for not necessarily co-associative bialgebras

1992

In this Letter, a cohomology and an associated theory of deformations for (not necessarily co-associative) bialgebras are studied. The cohomology was introduced in a previous paper (Lett. Math. Phys.25, 75–84 (1992)). This theory has several advantages, especially in calculating cohomology spaces and in its adaptability to deformations of quasi-co-associative (qca) bialgebras and even quasi-triangular qca bialgebras.

Mathematics::Rings and AlgebrasComplex systemStatistical and Nonlinear PhysicsDeformation (meteorology)Mathematics::Algebraic TopologyCohomologyAlgebraMathematics::K-Theory and HomologyMathematics::Category TheoryMathematics::Quantum AlgebraEquivariant cohomologyAlgebra over a fieldMathematical PhysicsAssociative propertyMathematicsLetters in Mathematical Physics
researchProduct