Search results for "Video processing"

showing 10 items of 56 documents

Spectral band selection for vegetation properties retrieval using Gaussian processes regression

2020

Abstract With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, w…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesComputer Science - Computer Vision and Pattern Recognition02 engineering and technologyManagement Monitoring Policy and Law01 natural sciencesStatistics - Applicationssymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Computers in Earth SciencesGaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingGlobal and Planetary ChangeImage and Video Processing (eess.IV)Hyperspectral imagingRegression analysisVegetationSpectral bands15. Life on landElectrical Engineering and Systems Science - Image and Video ProcessingRegressionGeographyGround-penetrating radarsymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Generation of global vegetation products from EUMETSAT AVHRR/METOP satellites

2020

We describe the methodology applied for the retrieval of global LAI, FAPAR and FVC from Advanced Very High Resolution Radiometer (AVHRR) onboard the Meteorological-Operational (MetOp) polar orbiting satellites also known as EUMETSAT Polar System (EPS). A novel approach has been developed for the joint retrieval of three parameters (LAI, FVC, and FAPAR) instead of training one model per parameter. The method relies on multi-output Gaussian Processes Regression (GPR) trained over PROSAIL EPS simulations. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. We describe the ma…

010504 meteorology & atmospheric sciencesAdvanced very-high-resolution radiometerComputer scienceImage and Video Processing (eess.IV)0211 other engineering and technologiesPolar orbit02 engineering and technologyVegetationAtmospheric modelElectrical Engineering and Systems Science - Image and Video Processing01 natural sciencesGround-penetrating radarFOS: Electrical engineering electronic engineering information engineeringSatelliteSensitivity (control systems)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Temperate Fish Detection and Classification: a Deep Learning based Approach

2021

A wide range of applications in marine ecology extensively uses underwater cameras. Still, to efficiently process the vast amount of data generated, we need to develop tools that can automatically detect and recognize species captured on film. Classifying fish species from videos and images in natural environments can be challenging because of noise and variation in illumination and the surrounding habitat. In this paper, we propose a two-step deep learning approach for the detection and classification of temperate fishes without pre-filtering. The first step is to detect each single fish in an image, independent of species and sex. For this purpose, we employ the You Only Look Once (YOLO) …

0106 biological sciencesFOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition010603 evolutionary biology01 natural sciencesConvolutional neural networkVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420Machine Learning (cs.LG)Artificial IntelligenceClassifier (linguistics)FOS: Electrical engineering electronic engineering information engineeringbusiness.industry010604 marine biology & hydrobiologyDeep learningImage and Video Processing (eess.IV)Process (computing)Pattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingObject detectionA priori and a posterioriNoise (video)Artificial intelligenceTransfer of learningbusiness
researchProduct

Scalable Virtual Network Video-Optimizer for Adaptive Real-Time Video Transmission in 5G Networks

2020

The increasing popularity of video applications and ever-growing high-quality video transmissions (e.g., 4K resolutions), has encouraged other sectors to explore the growth of opportunities. In the case of health sector, mobile Health services are becoming increasingly relevant in real-time emergency video communication scenarios where a remote medical experts’ support is paramount to a successful and early disease diagnosis. To minimize the negative effects that could affect critical services in a heavily loaded network, it is essential for 5G video providers to deploy highly scalable and priorizable in-network video optimization schemes to meet the expectations of a large quantity of vide…

MultitenancyComputer Networks and CommunicationsComputer sciencebusiness.industryQuality of serviceTestbed020206 networking & telecommunications02 engineering and technologyVideo processingVideo optimizationScalability0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringbusinessVirtual network5GComputer networkIEEE Transactions on Network and Service Management
researchProduct

Improving prostate whole gland segmentation in t2-weighted MRI with synthetically generated data

2021

Whole gland (WG) segmentation of the prostate plays a crucial role in detection, staging and treatment planning of prostate cancer (PCa). Despite promise shown by deep learning (DL) methods, they rely on the availability of a considerable amount of annotated data. Augmentation techniques such as translation and rotation of images present an alternative to increase data availability. Nevertheless, the amount of information provided by the transformed data is limited due to the correlation between the generated data and the original. Based on the recent success of generative adversarial networks (GAN) in producing synthetic images for other domains as well as in the medical domain, we present…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePipeline (computing)Computer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology030218 nuclear medicine & medical imagingMachine Learning (cs.LG)03 medical and health sciencesProstate cancer0302 clinical medicineProstate020204 information systems0202 electrical engineering electronic engineering information engineeringmedicineFOS: Electrical engineering electronic engineering information engineeringSegmentationbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseData availabilitymedicine.anatomical_structureArtificial intelligencebusinessT2 weighted
researchProduct

Comparative survey of visual object classifiers

2018

Classification of Visual Object Classes represents one of the most elaborated areas of interest in Computer Vision. It is always challenging to get one specific detector, descriptor or classifier that provides the expected object classification result. Consequently, it critical to compare the different detection, descriptor and classifier methods available and chose a single or combination of two or three to get an optimal result. In this paper, we have presented a comparative survey of different feature descriptors and classifiers. From feature descriptors, SIFT (Sparse & Dense) and HeuSIFT combination colour descriptors; From classification techniques, Support Vector Classifier, K-Nea…

FOS: Computer and information sciences[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]ComputingMethodologies_PATTERNRECOGNITIONComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)FOS: Electrical engineering electronic engineering information engineeringComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern Recognition[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Electrical Engineering and Systems Science - Image and Video Processing
researchProduct

Capturing and Indexing Rehearsals: The Design and Usage of a Digital Archive of Performing Arts

2015

International audience; Preserving the cultural heritage of the performing arts raises difficult and sensitive issues, as each performance is unique by nature and the juxtaposition between the performers and the audience cannot be easily recorded. In this paper, we report on an experimental research project to preserve another aspect of the performing arts—the history of their rehearsals. We have specifically designed non-intrusive video recording and on-site documentation techniques to make this process transparent to the creative crew, and have developed a complete workflow to publish the recorded video data and their corresponding meta-data online as Open Data using state-of-the-art audi…

Digital archivingComputer science[ INFO.INFO-WB ] Computer Science [cs]/Web02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]computer.software_genre[SHS.MUSEO]Humanities and Social Sciences/Cultural heritage and museologyvideo processingWorld Wide WebDocumentationopera11. Sustainability0202 electrical engineering electronic engineering information engineeringAudio signal processing[ INFO.INFO-MM ] Computer Science [cs]/Multimedia [cs.MM]HypervideoMultimediahypervideo[INFO.INFO-WB]Computer Science [cs]/Web[INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM][INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA]Video processingLinked dataperforming artsaudio processingCultural heritageWorkflowtheaterLinked Data[ SHS.MUSEO ] Humanities and Social Sciences/Cultural heritage and museology020201 artificial intelligence & image processingPerforming artscomputer[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Application of LSTM architectures for next frame forecasting in Sentinel-1 images time series

2020

L'analyse prédictive permet d'estimer les tendances des évènements futurs. De nos jours, les algorithmes Deep Learning permettent de faire de bonnes prédictions. Cependant, pour chaque type de problème donné, il est nécessaire de choisir l'architecture optimale. Dans cet article, les modèles Stack-LSTM, CNN-LSTM et ConvLSTM sont appliqués à une série temporelle d'images radar sentinel-1, le but étant de prédire la prochaine occurrence dans une séquence. Les résultats expérimentaux évalués à l'aide des indicateurs de performance tels que le RMSE et le MAE, le temps de traitement et l'index de similarité SSIM, montrent que chacune des trois architectures peut produire de bons résultats en fon…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesApprentissage profondComputer Science - Machine LearningImage and Video Processing (eess.IV)[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]PrévisionComputer Science - Neural and Evolutionary ComputingDeep Learning AlgorithmsPrédiction[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]Electrical Engineering and Systems Science - Image and Video ProcessingLand cover change[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Machine Learning (cs.LG)SARIMA[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]FOS: Electrical engineering electronic engineering information engineeringSatellite imagesNeural and Evolutionary Computing (cs.NE)LSTMPredictionForecastingImages satellitaires
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Local-Area-Learning Network: Meaningful Local Areas for Efficient Point Cloud Analysis

2020

Research in point cloud analysis with deep neural networks has made rapid progress in recent years. The pioneering work PointNet offered a direct analysis of point clouds. However, due to its architecture PointNet is not able to capture local structures. To overcome this drawback, the same authors have developed PointNet++ by applying PointNet to local areas. The local areas are defined by center points and their neighbors. In PointNet++ and its further developments the center points are determined with a Farthest Point Sampling (FPS) algorithm. This has the disadvantage that the center points in general do not have meaningful local areas. In this paper, we introduce the neural Local-Area-L…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video ProcessingMachine Learning (cs.LG)
researchProduct