Search results for "Viral Replication"
showing 10 items of 157 documents
Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis
2017
Positive-sense, single-stranded RNA viruses are important pathogens infecting almost all types of organisms. Experimental evidence from distributions of mutations and from viral RNA amplification suggest that these pathogens may follow different RNA replication modes, ranging from the stamping machine replication (SMR) to the geometric replication (GR) mode. Although previous theoretical work has focused on the evolutionary dynamics of RNA viruses amplifying their genomes with different strategies, little is known in terms of the bifurcations and transitions involving the so-called error threshold (mutation-induced dominance of mutants) and lethal mutagenesis (extinction of all sequences du…
Chromatin organization regulates viral egress dynamics.
2017
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes s…
Herpes simplex virus 1 induces egress channels through marginalized host chromatin
2016
AbstractLytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. We used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, co…
Constrained evolvability of interferon suppression in an RNA virus.
2016
AbstractInnate immunity responses controlled by interferon (IFN) are believed to constitute a major selective pressure shaping viral evolution. Viruses encode a variety of IFN suppressors, but these are often multifunctional proteins that also play essential roles in other steps of the viral infection cycle, possibly limiting their evolvability. Here, we experimentally evolved a vesicular stomatitis virus (VSV) mutant carrying a defect in the matrix protein (M∆51) that abolishes IFN suppression and that has been previously used in the context of oncolytic virotherapy. Serial transfers of this virus in normal, IFN-secreting cells led to a modest recovery of IFN blocking capacity and to weak …
Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins
2017
Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensiti…
2019
Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collect…
2021
The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolite…
Viral entry, lipid rafts and caveosomes.
2005
Lipid rafts and caveolae are detergent-insoluble plasma membrane microdomains, involved in cellular endocytic processes and signalling. Several viruses, including a human pathogen, echovirus 1, and an extensively studied simian virus 40 utilize these domains for internalization into the host cells. Interaction of viruses with receptors on the cell surface triggers specific conformational changes of the virus particle and can give rise to signalling events, which determine the mechanisms of virus entry. After internalization via cell surface lipid rafts or caveolae, virus-containing vesicles can fuse with caveosomes, pre-existing cytoplasmic organelles, or dock on other intracellular organel…
STABILITY OF A STOCHASTICALLY PERTURBED MODEL OF INTRACELLULAR SINGLE-STRANDED RNA VIRUS REPLICATION
2019
Compared to the replication of double-stranded RNA and DNA viruses, the replication of single-stranded viruses requires the production of a number of intermediate strands that serve as templates for the synthesis of genomic-sense strands. Two theoretical extreme mechanisms for replication for such single-stranded viruses have been proposed; one extreme being represented by the so-called linear stamping machine and the opposite extreme by the exponential growth. Of course, real systems are more complex and examples have been described in which a combination of such extreme mechanisms can also occur: a fraction of the produced progeny resulting from a stamping-machine type of replication that…
Reactivation of chronic type B hepatitis: the effect on expression of serum HBV-DNA and pre-S encoded proteins.
1988
Hepatitis B markers were studied in seven patients with reactivated liver disease. Reactivation of chronic type B hepatitis, as indicated by the reappearance of hepatitis B e antigen (HBeAg) in the serum, was characterised by the appearance of hepatitis B virus-DNA (HBV-DNA) in the serum. The expression of pre-S 1 encoded protein remained unchanged in five of seven patients, and poly-HSA as a marker for pre-S 2 encoded protein remained detectable in six of seven patients before and after reactivation of chronic hepatitis. The level of serum HBV-DNA correlated well with the level of liver enzymes, which rose from normal to various levels after reactivation of the liver disease. The data sugg…