Search results for "Volume"
showing 10 items of 1932 documents
Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites
2016
Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental …
The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations
2021
Funding Information: We are thankful to the GlobBiomass project team and Frank Martin Seifert (ESA) for valuable suggestions and stimulating scientific discussions. We are thankful to Takeo Tadono (JAXA EORC), Masato Hayashi, (JAXA EORC), Kazufumi Kobayashi (RESTEC), Åke Rosenqvist (soloEO), and Josef Kellndorfer (EBD) for support with the use and interpretation of the ALOS PALSAR mosaics. Support by the CCI Land Cover project team, in particular Sophie Bontemps (UCL), is greatly acknowledged. The help from Martin Jung (MPI-BGC) in feature selection and Ulrich Weber (MPI-BGC) for data processing for the GSV-to-AGB conversions is greatly acknowledged. Forest inventory data for the validation…
Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)
2021
Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…
Controlled time integration for the numerical simulation of meteor radar reflections
2016
We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …
Stochastic Galerkin method for cloud simulation
2018
AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results…
Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments
2021
The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h&minus
Testing the use of an image-based technique to measure gully erosion at Sparacia experimental area
2016
The first part of this investigation was aimed at testing the use of a three-dimensional (3D) Digital Terrain Model (DTM) and a quasi-tridimensional (2.5D) Digital Elevation Model (DEM) obtained by a large series of oblique images of eroded channels taken from consumer un-calibrated and non-metric cameras. For two closed earth channels having a different sinuosity the ground measurement of some cross-sections by a profilometer (P) was carried out. The real volume of each channel was also measured by waterproofing it by a plastic film and filling it with a known volume of water. The comparison among the three methods (3D, 2.5D and P) pointed out that a limited underestimation of the total vo…
Volcanic plume and bomb field masses from thermal infrared camera imagery
2013
International audience; Masses erupted during normal explosions at Stromboli volcano (Italy) are notoriously difficult to measure. We present a method that uses thermal infrared video for cooling bomb fields to obtain the total power emitted by all hot particles emitted during an explosion. A given mass of magma (M) will emit a finite amount of thermal power, defined by M cp(Te−T0), cp and Te being magma specific heat capacity and temperature, and T0 being ambient temperature. We use this relation to convert the total power emitted by the bomb field to the mass required to generate that power. To do this we extract power flux curves for the field and integrate this through time to obtain to…
How much is enough? : The convergence of finite sample scattering properties to those of infinite media
2021
We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using both numerically exact methods for solving the Maxwell equations and radiative-transfer-approximation methods, that the scattering properties of the cloud converge after about ten million particles in the system. After that, the backward-scattered properties of the system should estimate the properties of a macroscopic, practically infinite system. (C) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.o…
Biomass and volume modeling in Olea europaea L. cv "Leccino"
2017
Key message: This work demonstrates that the Olive tree, which is managed and pruned as a fruit tree, can be treated as a forest tree using allometric equations, to estimate both biomass production and volumes. Abstract: The Olive tree (Olea europaea L.) is an evergreen tree that can grow and accumulate a relatively high amount of dry matter, even in dry environmental conditions common in the Mediterranean basin and typical of traditional rain-fed agriculture. The objective of this research was to develop a tool to predict woody biomass and tree component volume for the olive tree, to be used for different agricultural and environmental purposes. The study was carried out in six olive grove…