Search results for "WARE"

showing 10 items of 9184 documents

Enabling partially reconfigurable IP cores parameterisation and integration using MARTE and IP-XACT

2012

International audience; This paper presents a framework which facilitates the parameterization and integration of IP cores into partially reconfigurable SoC platforms, departing from a high-level of abstraction. The approach is based in a Model-Driven Engineering (MDE) methodology, which exploits two widely used standards for Systems-on-Chip specification, MARTE and IP-XACT. The presented work deals with the deployment level of the MDE approach, in which the abstract components of the platform are first linked to the lower level IP-XACT counterparts. At this phase, information for parameterization and integration is readily available, and a synthesizable model can be obtained from the gener…

010302 applied physicsEngineeringExploitbusiness.industryEmphasis (telecommunications)02 engineering and technology01 natural sciences020202 computer hardware & architecture[INFO.INFO-ES] Computer Science [cs]/Embedded SystemsSoftware deploymentEmbedded systemIP-XACT0103 physical sciences0202 electrical engineering electronic engineering information engineeringSystem on a chip[INFO.INFO-ES]Computer Science [cs]/Embedded Systems[ INFO.INFO-ES ] Computer Science [cs]/Embedded SystemsbusinessField-programmable gate arrayAbstraction (linguistics)
researchProduct

Resistive communications based on neuristors

2017

Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication.

010302 applied physicsFOS: Computer and information sciencesResistive touchscreenCommunication unitHardware_MEMORYSTRUCTURESComputer science020208 electrical & electronic engineeringComputer Science - Emerging TechnologiesSingle element02 engineering and technologyFunction (mathematics)Memristor01 natural scienceslaw.inventionEmerging Technologies (cs.ET)Unified Modeling LanguagelawPhysical chemical0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringElement (category theory)computercomputer.programming_language
researchProduct

Evolution of application-specific cache mappings

2020

Reconfigurable caches offer an intriguing opportunity to tailor cache behavior to applications for better run-times and energy consumptions. While one may adapt structural cache parameters such as cache and block sizes, we adapt the memory-address-to-cache-index mapping function to the needs of an application. Using a LEON3 embedded multi-core processor with reconfigurable cache mappings, a metaheuristic search procedure, and MiBench applications, we show in this work how to accurately compare non-deterministic performances of applications and how to use this information to implement an optimization procedure that evolves application-specific cache mappings for the LEON3 multi-core processo…

010302 applied physicsHardware_MEMORYSTRUCTURESComputer science0103 physical sciences0202 electrical engineering electronic engineering information engineeringApplication specific02 engineering and technologyParallel computingCache01 natural sciences020202 computer hardware & architectureInternational Journal of Hybrid Intelligent Systems
researchProduct

Multi-application Based Fault-Tolerant Network-on-Chip Design for Mesh Topology Using Reconfigurable Architecture

2019

In this paper, we propose a two-step fault-tolerant approach to address the faults occurred in cores. In the first stage, a Particle Swarm Optimization (PSO) based approach has been proposed for the fault-tolerant mapping of multiple applications on to the mesh based reconfigurable architecture by introducing spare cores and a heuristic has been proposed for the reconfiguration in the second stage. The proposed approach has been experimented by taking several benchmark applications into consideration. Communication cost comparisons have been carried out by taking the failed cores as user input and the experimental results show that our approach could get improvements in terms of communicati…

010302 applied physicsHeuristic (computer science)business.industryComputer scienceMesh networkingControl reconfigurationParticle swarm optimizationFault tolerance02 engineering and technology01 natural sciences020202 computer hardware & architectureNetwork on a chipSpare partEmbedded system0103 physical sciences0202 electrical engineering electronic engineering information engineeringBenchmark (computing)business
researchProduct

C-switches: Increasing switch radix with current integration scale

2011

In large switch-based interconnection networks, increasing the switch radix results in a decrease in the total number of network components, and consequently the overall cost of the network can be significantly reduced. Moreover, high-radix switches are an attractive option to improve the network performance in terms of latency, since hop count is also reduced. However, there are some problems related to the integration scale to design such single-chip switches. In this paper we discuss key issues and evaluate an interesting alternative for building high-radix switches going beyond the integration scale bounds. The idea basically consists in combining several current smaller single-chip swi…

010302 applied physicsInterconnectionComputer sciencebusiness.industry02 engineering and technologyKey issues01 natural sciencesPort (computer networking)020202 computer hardware & architectureHop (networking)0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringNetwork performanceCrossbar switchbusinessComputer network
researchProduct

Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

2018

The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

010302 applied physicsMaterials scienceScale (ratio)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologycomputer.software_genre01 natural sciencesSimulation softwareMonocrystalline siliconScientific method0103 physical sciencesTransient (oscillation)0210 nano-technologyMaterial propertiescomputerIOP Conference Series: Materials Science and Engineering
researchProduct

Experimental and numerical investigation of laboratory crystal growth furnace for the development of model-based control of CZ process

2019

Abstract The presented study is focused on laboratory Czochralski crystal growth experiments and their mathematical modelling. The developed small-scale CZ crystal growth furnace is described as well as the involved automation systems: crystal radius detection by image recognition, temperature sensors, adjustable heater power and crystal pull rate. The CZ-Trans program is used to model the experimental results – transient, 2D axisymmetric simulation software primarily used for modelling of the industrial-scale silicon crystal growth process. Poor agreement with the experimental results is reached; however, the proven ability to perform affordable, small-scale experiments and successfully mo…

010302 applied physicsMaterials sciencebusiness.industryProcess (computing)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physicscomputer.software_genreProcess automation system01 natural sciencesAutomationSimulation softwareInorganic ChemistryCrystalMonocrystalline silicon0103 physical sciencesMaterials ChemistryTransient (oscillation)0210 nano-technologybusinesscomputerJournal of Crystal Growth
researchProduct

Measuring rain energy with the employment of “Arduino”

2016

This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Diverse studies agree on the possibility of generating electricity from rainfall, but to date, a study that can measure the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes — to measure the energy produced from a single raindrop — and concludes with an ad hoc Arduino-based measuring system, aimed at measuring the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to r…

010302 applied physicsMeasure (data warehouse)EngineeringEnergy harvestingbusiness.industryElectric potential energyElectrical engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnologySettore ING-INF/01 - Elettronica01 natural sciencesSettore ING-IND/31 - ElettrotecnicaElectricity generationTransducerArduino0103 physical sciencesOscilloscope0210 nano-technologybusinessEnergy harvestingPiezoelectric sensorEnergy (signal processing)2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Electrical Modeling of Monolithically Integrated GMR Based Current Sensors

2018

We report on the electrical compact model, using Verilog-A, of a monolithically integrated giant magnetoresistance (GMR) based electrical current sensors. For this purpose, a specifically designed ASIC (AMS $0.35\mu \mathrm{m}$ technology) has been considered, onto which such sensors have been patterned and fabricated, following a two-steps procedure. This work is focused on the DC regime model extraction, giving evidences of its good performance and stating the bases for subsequent model improvements.

010302 applied physicsModel extractionMaterials sciencebusiness.industry010401 analytical chemistryElectrical engineeringGiant magnetoresistance01 natural sciences0104 chemical sciencesElectrical currentApplication-specific integrated circuit0103 physical sciencesHardware design languagesCurrent (fluid)business2018 Spanish Conference on Electron Devices (CDE)
researchProduct

Identification of parameters and harmonic losses of a deep-bar induction motor

2017

High frequency harmonics from a frequency converter causes additional losses in a deep-bar induction motor. The harmonics have their own amplitude and phase with respect to the fundamental signal, but the harmonic loss is only dependent on the amplitude of harmonics. A deep-bar induction motor can be modelled by a triple-cage circuit to take skin effect into account. The triple cage circuit having many parameters could be estimated from a small-signal model of the machine by using Differential Evolution. The correctly estimated parameters make the triple-cage circuit valid in a wide range of frequencies. However, the triple-cage circuit is very complicated which makes it difficult to model …

010302 applied physicsPhysicsFrequency multiplier020208 electrical & electronic engineering02 engineering and technologyLC circuit01 natural sciencesHarmonic analysisComputer Science::Hardware ArchitectureComputer Science::Emerging TechnologiesControl theoryHarmonics0103 physical sciences0202 electrical engineering electronic engineering information engineeringHarmonicEquivalent circuitInduction motorLinear circuit2017 Seventh International Conference on Information Science and Technology (ICIST)
researchProduct