Search results for "Wavelength range"
showing 4 items of 14 documents
uality Evaluation of “Tardivo di Ciaculli” Mandarins in Post-Harvest Processing on an Industrial Scale Using a Portable Vis/NIR Device
2016
Abstract. Vis/NIR technology is widely used today to quickly and non-destructively evaluate fruit and vegetable qualities, and many applications have been found since the 1990s. However, no industrial-scale applications can further consolidate the use of non-destructive techniques in post-harvest processing. This study aims to test the possibility of applying vis/NIR technology in a modern citrus-processing plant to assess the damage that the fruits eventually suffer when they are processed on an industrial scale and the evolution of their key quality parameters in a period of 10 days after harvest. The spectral acquisitions were performed using a portable vis/NIR device, which operated in …
Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells
2015
Light scattering from ZnO nanorods (NR) is investigated, modeled, and applied to a solar cell. ZnO NR (120-1300 nm long, 280-60 nm large), grown by low-cost chemical bath deposition at 90 degrees C, exhibit diffused-to-total transmitted light as high as 70% and 30% in the 400 and 1000 nm wavelength range, respectively. Data and scattering simulation show that ZnO NR length plays a crucial role in light diffusion effect. A transparent ZnO NR film grown on glass and placed on top of a 1 mu m thick c-Si solar cell is shown to enhance the light-current conversion efficiency for wavelengths longer than 600 nm. (C) 2015 AIP Publishing LLC.
Evaluation of Skin Melanoma in Spectral Range 450-950 nm Using Principal Component Analysis
2013
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450-950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
Photoelectron emission experiments with ECR-driven multi-dipolar negative ion plasma source
2017
Photoelectron emission measurements have been performed using a 2.45 GHz ECR-driven multi-dipolar plasma source in a low pressure hydrogen discharge. Photoelectron currents induced by light emitted from ECR zone and H− production region are measured from Al, Cu, Mo, Ta, and stainless steel (SAE 304) surfaces as a function of microwave power and neutral hydrogen pressure. The total photoelectron current from the plasma chamber wall is estimated to reach values up to 1 A for 900 W of injected microwave power. It is concluded that the volumetric photon emission rate in wavelength range relevant for photoelectron emission is a few times higher in arc discharge. peerReviewed