Search results for "X-Ray Absorption Spectroscopy"

showing 10 items of 129 documents

Synergy of Miniemulsion and Solvothermal Conditions for the Low-Temperature Crystallization of Magnetic Nanostructured Transition-Metal Ferrites

2017

Crystalline first-row transition-metal (Mn, Fe, Co, Ni, Cu, and Zn) ferrites were prepared by an unprecedented synergetic combination of miniemulsion synthesis and solvothermal route, pursuing unconventional conditions in terms of space confinement, temperature, and pressure. This synergy allowed for obtaining six different crystalline ferrites at much lower temperature (i.e., 80 °C) than usually required and without any postsynthesis thermal treatment. X-ray diffraction (XRD) revealed that analogous ferrites synthesized by miniemulsion at ambient pressure or in bulk (i.e., from an aqueous bulk solution and not in the confined space of the miniemulsion droplets) either at ambient pressure o…

Materials Chemistry2506 Metals and AlloysIRON-OXIDEMaterials scienceAbsorption spectroscopyGeneral Chemical EngineeringChemistry (all); Chemical Engineering (all); Materials Chemistry2506 Metals and Alloys02 engineering and technologyThermal treatment010402 general chemistry01 natural sciencesHYDROTHERMAL SYNTHESISlaw.inventionINORGANIC NANOPARTICLESTransition metallawMaterials ChemistryOrganic chemistryChemical Engineering (all)CrystallizationX-ray absorption spectroscopyAqueous solutionWET-CHEMISTRYChemistry (all)General ChemistrySELECTIVE OXIDATION021001 nanoscience & nanotechnology0104 chemical sciencesMiniemulsionChemical engineering0210 nano-technologyAmbient pressureChemistry of Materials
researchProduct

The role of Ga and Bi doping on the local structure of transparent zinc oxide thin films

2021

The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015. Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant from the Agência Nacional de Inovação, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the…

Materials scienceAbsorption spectroscopyCiências Naturais::Ciências FísicasThin films:Ciências Físicas [Ciências Naturais]:Chemical engineering [Engineering and technology]02 engineering and technology010402 general chemistry01 natural sciencessymbols.namesakeX-ray photoelectron spectroscopy:Engenharia química [Ciências da engenharia e tecnologias]Zinc oxide:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryThin filmChemistry Chemical engineeringWurtzite crystal structureX-ray absorption spectroscopyScience & TechnologyMechanical EngineeringThermoelectricMetals and AlloysSputteringX-ray absorption spectroscopySputter deposition021001 nanoscience & nanotechnologyQuímica Engenharia química0104 chemical sciencesCrystallography13. Climate actionMechanics of Materialsddc:540Raman spectroscopysymbolsGrain boundary0210 nano-technologyRaman spectroscopy
researchProduct

Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures

2020

This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².

Materials scienceAbsorption spectroscopyNanowireGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionlawMonolayer:NATURAL SCIENCES:Physics [Research Subject Categories]Layered materialsElectron microscopyX-ray absorption spectroscopyReS2business.industryGrapheneX-ray absorption spectroscopyHeterojunctionSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffraction0104 chemical sciencesSurfaces Coatings and FilmsSemiconductorRaman spectroscopyCore-shell nanowireOptoelectronicsDirect and indirect band gaps0210 nano-technologybusinessApplied Surface Science
researchProduct

Formation and Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the Reducing Agent

2014

Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles in a porous polystyrene support, using palladium acetate as a precursor and gaseous H2 or CO as reducing agents. These results, in conjunction with data obtained by diffuse reflectance UV–vis and DRIFT spectroscopy and TEM measurements, allowed unraveling of the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles. In particular, it was found that the reducing agent affects (i) the reduction rate (which is faster in the presence of CO) and (ii) the properties of the hosted nanoparticles, in terms of size (bigger with CO), morphology (spherica…

Materials scienceExtended X-ray absorption fine structureReducing agentSmall-angle X-ray scatteringchemistry.chemical_elementNanoparticlePd nanoparticles; SAXS; EXAFSSAXSXANESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistry.chemical_compoundEXAFSGeneral EnergyPd nanoparticleschemistryChemical engineeringPalladium nanoparticles time-resolved X-ray Absorption Spectroscopy Small Angle X-ray Spectroscopy Transmission Electron MicroscopyDiffuse reflectionPolystyrenePhysical and Theoretical ChemistryPalladium
researchProduct

MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**

2020

Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…

Materials scienceIron09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónNanoparticle010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysisNitrobenzenechemistry.chemical_compoundLight sourceAnilineCatàlisiQUIMICA ANALITICAmedia_common.cataloged_instanceUser FacilityEuropean unionBimetallic stripmedia_commonX-ray absorption spectroscopyNanocomposite010405 organic chemistryOrganic ChemistryGeneral ChemistryMetal-organic frameworks0104 chemical sciences12.- Garantizar las pautas de consumo y de producción sostenibleschemistryChemical engineeringFe dopedPd nanoparticlesNanoparticlesMaterials nanoestructuratsNational laboratoryHumanitiesPalladium
researchProduct

X-ray absorption and Raman spectroscopy studies of tungstates solid solutions ZncNi1-cWO4 (c=0.0-1.0)

2020

G.B. acknowledges the financial support provided by the State Education Development Agency for project No. 1.1.1.2/VIAA/3/19/444 (agreement No. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. A.K. and A.K. would like to thank the support of the Latvian Council of Science project No. lzp-2019/1-0071. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Materials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyAnalytical chemistryFOS: Physical sciencesGeneral Physics and AstronomyZnWO47. Clean energy01 natural sciencessymbols.namesakeNiWO40103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsX-ray ab- sorption spectroscopy010302 applied physicsX-ray absorption spectroscopyCondensed Matter - Materials ScienceX-rayMaterials Science (cond-mat.mtrl-sci)Condensed Matter - Other Condensed MatterMicrocrystallineOctahedronsolid solutionsRaman spectroscopysymbolsAbsorption (chemistry)Raman spectroscopyOther Condensed Matter (cond-mat.other)Solid solutiontungstates
researchProduct

High-temperature X-ray absorption spectroscopy study of thermochromic copper molybdate

2019

Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/5 and SJZ/2018/1 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The work was also supported by philanthropist MikroTik and administrated by the University of Latvia Foundation . The experiment at the Elettra synchrotron was performed within the project No. 20150303 .

Materials sciencePolymers and PlasticsAbsorption spectroscopyAnalytical chemistrychemistry.chemical_element02 engineering and technologyMolybdate01 natural sciences7. Clean energychemistry.chemical_compound0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010302 applied physicsReverse Monte Carlo simulationsX-ray absorption spectroscopyThermochromismExtended X-ray absorption fine structureCuMoO4Metals and AlloysAtmospheric temperature range021001 nanoscience & nanotechnologyCopperXANESXANESElectronic Optical and Magnetic MaterialsEXAFSchemistryMolybdenumCeramics and Composites0210 nano-technologyActa Materialia
researchProduct

Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study

2020

Abstract The Fe(II) spin state in the condensed phase of [Fe(II)Cl2(tpm)] (tpm = [tris(pyrazol-1-yl)methane]; 1) catalyst has been determined through a combined experimental and theoretical investigation of X-Ray Absorption Spectroscopy (XAS) at the FeL2,3-edges and NK-edge. Results indicated that in this phase a mixed singlet/triplet state is plausible. These results have been compared with the already know Fe singlet spin state of the same complex in water solution. A detailed analysis of the electronic structure and bonding mechanism of the catalyst showed that the preference for the low-spin diamagnetic ground state, strongly depends upon the ligands, the bulk solvent and the interactio…

Materials scienceSpin statesDFT calculationHomogeneous catalysis02 engineering and technologyElectronic structure010402 general chemistryDFT calculations01 natural sciencesCatalysisSinglet stateTriplet stateDFT calculations.HOMO/LUMOX-ray absorption spectroscopyC-scorpionate catalystX-ray absorption spectroscopyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSpin statesC-scorpionate catalyst; DFT calculations; Spin states; X-ray absorption spectroscopySpin statePhysical chemistry0210 nano-technologyGround state
researchProduct

Theory of CaL2,3-edge XAS using a novel multichannel multiple-scattering method

2003

A new method for calculating X-ray absorption spectroscopy (XAS) at the L2,3 edges of Ca and transition metals is presented. It is based on the multichannel multiple-scattering theory by Natoli et al. [Phys. Rev. B, (1990), 42, 1944-1968] combined with the eigen-channel R-matrix formalism. Atomic multiplet-like effects, owing to the Coulomb interaction of photoelectrons and the 2p hole, are taken into account through a configuration interaction ansatz for the final-state wavefunction. The various multiplet states lead to a set of channels for the photoelectron wavefunction, which is calculated in multiple-scattering theory. The method is applied to Ca, an important element for biological ap…

Models MolecularNuclear and High Energy PhysicsX-ray absorption spectroscopyRadiationElectronic correlationScatteringChemistrySpectrum AnalysisX-RaysConfiguration interactionMetalloproteinsCalciumScattering theoryAtomic physicsWave functionInstrumentationMultipletAnsatzJournal of Synchrotron Radiation
researchProduct

Cytochrome c in a Dry Trehalose Matrix: Structural and Dynamical Effects Probed by X-Ray Absorption Spectroscopy

2007

AbstractWe report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the pre…

Models MolecularProtein ConformationIronAb initioBiophysicsHemechemistry.chemical_compoundProtein structureImidazoleAnimalsHistidineHorsesSpectroscopyX-ray absorption spectroscopyMyocardiumSpectrum AnalysisX-RaysProteinsCytochromes cTrehaloseTrehaloseX-ray absorption fine structureSolutionsCrystallographychemistryPolyvinyl AlcoholAbsorption (chemistry)Biophysical Journal
researchProduct