Search results for "X-Ray Absorption Spectroscopy"

showing 10 items of 129 documents

Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

1999

Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when gro…

PhotoluminescenceMaterials scienceIII-V semiconductorsSiliconExcitonBinding energyGeneral Physics and Astronomychemistry.chemical_elementBinding energyEpitaxyMolecular physicssymbols.namesakePhonon spectraLiquid phase epitaxial growth:FÍSICA [UNESCO]PhotoluminescenceAluminium compoundsX-ray absorption spectroscopyGallium arsenide Semiconductor growthImpurity statesDopingUNESCO::FÍSICASemiconductor epitaxial layersCrystallographychemistrysymbolsPhotoluminescence ; Binding energy ; Raman spectra ; III-V semiconductors ; Aluminium compounds ; Gallium arsenide Semiconductor growth ; Liquid phase epitaxial growth ; Semiconductor epitaxial layers ; Impurity states ; Excitons ; Phonon spectraExcitonsRaman spectraRaman spectroscopy
researchProduct

Controlled type-I–type-II transition in GaAs/AlAs/AlxGa1−xAs double-barrier quantum wells

1997

We show that the insertion of extremely narrow AlAs layers in double-barrier GaAs/AlAs/${\mathrm{Al}}_{\mathrm{x}}$${\mathrm{Ga}}_{1\mathrm{\ensuremath{-}}\mathrm{x}}$As quantum wells results in a variety of electronic configurations, thus providing a powerful tool for tailoring the electronic transitions in GaAs heterostructures. In particular, the transition from type-I to type-II recombination is shown to occur in correspondence with variations by a single monolayer in the thickness of the AlAs and/or GaAs layers. Drastic changes in the recombination lifetimes are correspondingly observed; at the same time, the photoluminescence efficiency is found to be almost independent of the type-I-…

PhysicsCondensed Matter::Materials ScienceX-ray absorption spectroscopyPhotoluminescenceCondensed matter physicsAtomic electron transitionMonolayerHeterojunctionElectron configurationType (model theory)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum wellPhysical Review B
researchProduct

Hard X-ray resonant electronic spectroscopy in transition metal oxides

2005

K-edge X-ray absorption and 2p-XPS spectra of 3d-element oxides present spectral features which cannot be explained within a simple one-electron model. These features reveal the fine electronic structure of transition metal (TM) oxides valence states resulting from hybridized TM-3d and O-2p states, and the correlations between these valence electrons. In this paper, we show how resonant electronic spectroscopy (resonant Auger or resonant photoelectron spectroscopy) around the TM K-edge can be used to interpret the structures of the threshold and, with the help of theoretical calculation, to determine the electronic configuration of the excited ion. Quadrupolar transitions towards localized …

PhysicsNuclear and High Energy PhysicsAuger electron spectroscopyX-ray absorption spectroscopyValence (chemistry)XASOxidesElectronic structureElectron spectroscopyAuger spectroscopyCondensed Matter::Materials ScienceX-ray photoelectron spectroscopy32.80.Hd; 61.10.Ht; 71.20.BeCondensed Matter::Strongly Correlated ElectronsElectron configurationAtomic physicsValence electronPhotoemissionInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

X-ray absorption spectra at the CaL2,3edge calculated within multichannel multiple scattering theory

2004

We report a theoretical method for x-ray absorption spectroscopy (XAS) in condensed matter which is based on the multichannel multiple scattering theory of Natoli et al. and the eigen-channel $R$-matrix method. While the highly flexible real-space multiple scattering (RSMS) method guarantees a precise description of the single-electron part of the problem, multiplet-like electron correlation effects between the photoelectron and localized electrons can be taken account for in a configuration interaction scheme. For the case where correlation effects are limited to the absorber atom, a technique for the solution of the equations is devised, which requires only little more computation time th…

PhysicsX-ray absorption spectroscopyAbsorption spectroscopyElectronic correlationScatteringAtomElectronScattering theoryConfiguration interactionAtomic physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ(Z=Al, Ga; Si, Ge)

2011

Using circular dichroism in x-ray-absorption spectroscopy (XAS/XMCD), we determined element-specific magnetic moments and spin-resolved unoccupied densities of states (DOS) for Co, Fe, and Mn in the quaternary Heusler compounds CoFeMn$Z$ ($Z=\text{Al}$, Ga; Si, Ge). These compounds belong to a class of highly spin-polarized materials with cubic LiMgPdSn-type structure. Different structure models for the sublattice occupation leading to similar average magnetization values can be distinguished by comparison of element-specific moments with theory. We find that the compounds form similar structures, where Co, Fe, Mn, and $Z$ occupy the $X$, ${X}^{\ensuremath{'}}$, $Y$, and $Z$ sublattice of t…

PhysicsX-ray absorption spectroscopyMagnetizationCircular dichroismMagnetic momentCondensed matter physicsDensity of statesAtomic physicsCondensed Matter PhysicsSpin (physics)SpectroscopySpectral lineElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

2p x-ray absorption spectroscopy of 3d transition metal systems

2021

Abstract This review provides an overview of the different methods and computer codes that are used to interpret 2p x-ray absorption spectra of 3d transition metal ions. We first introduce the basic parameters and give an overview of the methods used. We start with the semi-empirical multiplet codes and compare the different codes that are available. A special chapter is devoted to the user friendly interfaces that have been written on the basis of these codes. Next we discuss the first principle codes based on band structure, including a chapter on Density Functional theory based approaches. We also give an overview of the first-principle multiplet codes that start from a cluster calculati…

Quantum chemistry calculationsComputer science02 engineering and technology01 natural sciencesTheoretical physicsAtomic and Molecular Physics0103 physical sciencesTaverneElectronicCluster (physics)Optical and Magnetic MaterialsPhysical and Theoretical ChemistryWave functionElectronic band structureMultipletComputingMilieux_MISCELLANEOUSDensity Functional TheorySpectroscopyX-ray absorption spectroscopy; Density Functional Theory; Quantum chemistry calculationsX-ray absorption spectroscopyRadiation010304 chemical physicsBasis (linear algebra)X-ray absorption spectroscopy021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]First principleDensity functional theoryand Optics0210 nano-technologyDen kondenserade materiens fysik
researchProduct

X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

2009

Abstract We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH2OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH3NaO3S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms be…

RongaliteX-ray absorption spectroscopychemistry.chemical_compoundAbsorption spectroscopyExtended X-ray absorption fine structureChemistryMetal ions in aqueous solutionInorganic chemistryActinidePhysical and Theoretical ChemistryAbsorption (chemistry)XANESRadiochimica Acta
researchProduct

Investigation of Many‐Body Effects in the Quasi‐Two‐Dimensional Electronic System of Organic Charge‐Transfer Salts

2019

SuperconductivityX-ray absorption spectroscopyMaterials scienceCondensed matter physicslawCharge (physics)Electronic structureScanning tunneling microscopeCondensed Matter PhysicsElectronic systemsMany bodyElectronic Optical and Magnetic Materialslaw.inventionphysica status solidi (b)
researchProduct

Study of High-Temperature Behaviour of ZnO by Ab Initio Molecular Dynamics Simulations and X-ray Absorption Spectroscopy

2021

Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced …

TechnologyMaterials science02 engineering and technology01 natural sciencesMolecular physicsThermal expansionArticleCondensed Matter::Materials Science0103 physical sciencesAtomGeneral Materials Science010306 general physicsAnisotropyAbsorption (electromagnetic radiation)MicroscopyQC120-168.85X-ray absorption spectroscopyExtended X-ray absorption fine structureTab initio molecular dynamicsQH201-278.5Anharmonicityzinc oxideEngineering (General). Civil engineering (General)021001 nanoscience & nanotechnologyTK1-9971Molecular geometryDescriptive and experimental mechanicsZnOElectrical engineering. Electronics. Nuclear engineeringTA1-20400210 nano-technologyextended X-ray absorption fine structureMaterials
researchProduct

Oxidation State and Local Structure of Chromium Ions in LaOCl

2021

This research is funded by the Latvian Council of Science, project “Novel transparent nanocomposite oxyfluoride materials for optical applications”, project No. LZP-2018/1-0335. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017- TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Technologyelectron-nuclear double resonance (ENDOR)Materials sciencechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesArticlelaw.inventionChromiumLattice constantX-ray photoelectron spectroscopyLaOCl; chromium; X-ray photoelectron spectroscopy (XPS); X-ray absorption spectroscopy; electron paramagnetic resonance (EPR); electron-nuclear double resonance (ENDOR)lawOxidation state:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials ScienceElectron paramagnetic resonanceMicroscopyQC120-168.85X-ray absorption spectroscopyTReducing atmosphereQH201-278.5X-ray absorption spectroscopy600X-ray photoelectron spectroscopy (XPS)Engineering (General). Civil engineering (General)021001 nanoscience & nanotechnologyXANESTK1-99710104 chemical sciences3. Good healthLaOClelectron paramagnetic resonance (EPR)Descriptive and experimental mechanicschemistry13. Climate actionPhysical chemistryElectrical engineering. Electronics. Nuclear engineeringchromiumTA1-20400210 nano-technologyddc:600Materials
researchProduct