Search results for "XE"

showing 10 items of 9661 documents

Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae

2017

Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome cl…

0106 biological sciences0301 basic medicineMagnaportheMutantSecondary Metabolism01 natural sciencesMicrobiologyMicrobiology03 medical and health sciencesPolyketideGene Expression Regulation FungalPolyketide synthaseAxenicGenePlant DiseasesRegulation of gene expressionbiologyFungal geneticsfood and beveragesOryzabiology.organism_classificationPlant LeavesMagnaporthe030104 developmental biologyBenzaldehydesMultigene FamilyPolyketidesbiology.proteinFatty AlcoholsPolyketide SynthasesTranscription FactorsResearch Article010606 plant biology & botanyMicrobiology
researchProduct

The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers.

2018

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleachi…

0106 biological sciences0301 basic medicineMicroscopy ConfocalChemistryLipid BilayersStackingLight-Harvesting Protein ComplexesPeasfood and beveragesFluorescence recovery after photobleachingMicroscopy Atomic Force01 natural sciencesBiochemistryLight-harvesting complexDiglycerides03 medical and health sciences030104 developmental biologyGlycolipidMembraneThylakoidConfocal laser scanning microscopyBiophysicslipids (amino acids peptides and proteins)Lipid bilayer010606 plant biology & botanyBiochemistry
researchProduct

Loss of

2020

The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/β/β'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the β-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the…

0106 biological sciences0301 basic medicineProtein subunitArabidopsisPlant Sciencelcsh:Plant culture01 natural sciences03 medical and health sciencessymbols.namesakelcsh:SB1-1110coat protein II (COPII)Plantes Cèl·lules i teixitsCOPIICreixement (Plantes)Secretory pathwayOriginal Researchsalt stressChemistryEndoplasmic reticulumVesiclecoat protein I (COPI)plant growthCOPIGolgi apparatusCell biology030104 developmental biologyCoatomerβ-COPGolgi apparatussymbols010606 plant biology & botanyFrontiers in plant science
researchProduct

Spoilage potential of Brettanomyces bruxellensis strains isolated from Italian wines

2018

Abstract Brettanomyces bruxellensis is an important wine spoilage agent. In this study a population of Brettanomyces strains isolated from Italian wines was thoroughly investigated to evaluate adaptability to wine conditions and spoilage potential. The presumptive isolates of Brettanomyces were identified at species level with 26S rRNA gene sequencing and species-specific PCR, and subsequently subjected to analysis of intra-species variability through the study of intron splice sites (ISS-PCR). Although, some strains were tracked in wines from different regions, extensive genetic biodiversity was observed within the B. bruxellensis population investigated. All strains were evaluated for the…

0106 biological sciences0301 basic medicineStrain resistanceGenotypeBrettanomyces030106 microbiologyPopulationFood spoilageBrettanomyces bruxellensisBrettanomycesVolatile phenolsWineWine spoilageMicrobial contaminationRibotyping01 natural sciences03 medical and health sciencesVolatile phenolPhenolsSpecies level010608 biotechnologyBrettanomyceFood scienceDNA FungaleducationYeast physiologyPhylogenyWineVolatile Organic Compoundseducation.field_of_studyGenetic diversitybiologydigestive oral and skin physiologyfood and beveragesbiology.organism_classificationItalySettore AGR/16 - MICROBIOLOGIA AGRARIAFood MicrobiologyFood Science
researchProduct

Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends

2017

Abstract Pulsed Electric Field (PEF) treatment was used as pre-treatment on the microalgae strain Auxenochlorella protothecoides (A.p.) prior to organic solvent extraction of lipids. Experiments were performed on fresh biomass from mixotrophic or autotrophic culture which both had an evaluated lipid content of 30–35% of cell dry weight. Lipid yield was determined gravimetrically and compared to the reference lipid content assessed by bead-milling and subsequent Soxhlet extraction. The biomass was concentrated at 10% w/w solids prior to PEF-treatment and further dewatered afterwards to approximately 25% w/w before extraction. PEF-treatment with an energy input of 1.5 MJ per kilogram of dry m…

0106 biological sciences0301 basic medicineTechnologyChromatographybiologyExtraction (chemistry)Nile redBiomassTransesterificationAuxenochlorellabiology.organism_classification01 natural sciences6. Clean waterSolventHexane03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistry010608 biotechnologyDry matterddc:600Agronomy and Crop ScienceAlgal Research
researchProduct

Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

2017

In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

0106 biological sciences0301 basic medicineautophagyabiotic stressHistone acetylation and deacetylationMini ReviewPlant Sciencelcsh:Plant culture01 natural sciencesEnvironmental stress03 medical and health scienceschemistry.chemical_compoundhistone deacetylationlcsh:SB1-1110Histone AcetyltransferasesRegulation of gene expressionprotein complexesbiologyAbiotic stressAutophagyHDACsCell biology030104 developmental biologyHistonechemistryAcetylationbiology.protein010606 plant biology & botanyFrontiers in Plant Science
researchProduct

New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi…

2021

The family Macrobiotidae is one of the most speciose and diverse groups among tardigrades. Although there have been attempts to reconstruct the phylogeny of this family, the evolutionary relationships within Macrobiotidae are only superficially determined as available genetic data cover only a small fraction of this vast group. Here, we present the first extensive molecular phylogeny of the family based on four molecular markers (18S rRNA, 28Sr RNA, ITS-2 and COI) associated with detailed morphological data for the majority of taxa. The phylogenetic analysis includes nearly two hundred sequences representing more than sixty species, including sixteen taxa that have never been sequenced and/…

0106 biological sciences0301 basic medicinekarhukaisetevoluutioBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesMonophylyGenusPhylogeneticsGeneticsXerobiotusTardigradaAnimalsSisubiotus gen. nov.CladeMolecular BiologyEcology Evolution Behavior and SystematicsPhylogenyintegrative taxonomymolecular phylogenyPhylogenetic treefylogenetiikkabiology.organism_classification030104 developmental biologyTaxonEvolutionary biologyRNA Ribosomalmorphological evolutionMolecular phylogeneticsTardigrade
researchProduct

Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

2019

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus.…

0106 biological sciences0301 basic medicineretrograde signalingChloroplastsArabidopsisPlant BiologyMitochondrion01 natural sciencesElectron Transport Complex IIIGene Expression Regulation PlantArabidopsisOXIDATIVE STRESS-RESPONSETranscriptional regulationCYCLIC ELECTRON FLOWBiology (General)Nuclear proteinANAC transcription factors1183 Plant biology microbiology virologyreactive oxygen speciesbiologyChemistryRETROGRADE REGULATIONGeneral NeuroscienceQRNuclear Proteinsfood and beveragesGeneral MedicinePlants Genetically Modified:Science::Biological sciences [DRNTU]Cell biologyMitochondriaChloroplastviherhiukkasetMedicineSignal transductionmitochondrial functionsResearch ArticleSignal TransductionQH301-705.5SciencemitokondriotGenetics and Molecular BiologyGeneral Biochemistry Genetics and Molecular BiologyPROTEIN COMPLEXESSIGNALING PATHWAYS03 medical and health scienceschloroplastStress PhysiologicalALTERNATIVE OXIDASESkasvitENZYME-ACTIVITIESredox signalingTranscription factorarabidopsis RCD1General Immunology and MicrobiologybiokemiaArabidopsis Proteinsta1182Biology and Life Sciencesbiology.organism_classification030104 developmental biologyCELL-DEATHPLANT-MITOCHONDRIAA. thalianaGeneral BiochemistryRetrograde signalingGENES-ENCODING MITOCHONDRIALproteiinit010606 plant biology & botanyTranscription Factors
researchProduct

Lesión medular y ejercicio físico: revisión desde una perspectiva deportiva

2016

Una de cada 2000 personas en Europa tiene lesión medular (LM), es normalmente más sedentaria que el resto de la población y encuentra diferentes problemas para practicar ejercicio físico (EF), destacando la escasa formación específica de los profesionales del deporte. Con el objetivo de aportar información sobre la LM y su interacción con la práctica deportiva, se realizó una revisión de literatura científica que analiza sus alteraciones músculoesqueléticas, cardiovasculares, respiratorias, de termorregulación, genitourinarias e intestinales, las úlceras por presión, la disreflexia autonómica y los aspectos nutricionales, generando recomendaciones prácticas. Como conclusión, la práctica hab…

0106 biological sciences030506 rehabilitationmedicine.medical_specialtyPhysical fitnessPopulationPhysical exerciseactividad física01 natural scienceslcsh:Social Sciences03 medical and health sciencesQuality of life (healthcare)medicinedeporte.lcsh:Social sciences (General)educationSpinal cord injuryParaplejiaeducation.field_of_studybusiness.industry010604 marine biology & hydrobiologyIncidence (epidemiology)General Medicinemedicine.diseaselcsh:HLife expectancyPhysical therapytetraplejiaAutonomic dysreflexialcsh:H1-990305 other medical sciencebusinessRevista Española de Discapacidad
researchProduct

Evolution of the Globin Gene Family in Deuterostomes: Lineage-Specific Patterns of Diversification and Attrition

2012

In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbel…

0106 biological sciences610 Medicine & health010603 evolutionary biology01 natural sciences10052 Institute of PhysiologyEvolution Molecular03 medical and health sciences1311 GeneticsPhylogenetics1312 Molecular BiologyGeneticsAnimalsGlobinAmbulacrariaMolecular BiologyResearch ArticlesPhylogenyEcology Evolution Behavior and Systematics030304 developmental biologyGenetics0303 health sciencesDeuterostomebiologyPhylogenetic treebiology.organism_classificationInvertebratesGlobinsXenacoelomorpha1105 Ecology Evolution Behavior and SystematicsSister group10076 Center for Integrative Human Physiology570 Life sciences; biologyAcorn wormMolecular Biology and Evolution
researchProduct