Search results for "XENON"
showing 10 items of 172 documents
DARWIN: Towards the ultimate dark matter detector
2016
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
2020
We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with experimental data, to calculate the cross sections for populating specific excited states of the caesium nuclei produced by neutrino capture on $^{131}$Xe and $^{136}$Xe. The shell model is further used to compute the decay schemes of the low-lying $1^{+}$ excited states of $^{136}$Cs, for which there is sparse experimental data. We explore the possibility of tagging the characteristic de-excitation $\gamma$-rays/conversion electrons using two techniques: spatial separation…
NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos
2012
In this paper we describe an innovative type of Time Projection Chamber (TPC), which uses high-pressure xenon gas (HPXe) and electroluminescence amplification of the ionization charge as the basis of an apparatus capable of fully reconstructing the energy and topological signature of rare events. We will discuss a specific design of such HPXe TPC, the NEXT-100 detector, that will search for neutrinoless double beta decay events using 100-150 kg of xenon enriched in the isotope Xe-136. NEXT-100 is currently under construction, after completion of an accelerated and very successful R&D period. It will be installed at the Laboratorio Subterr��neo de Canfranc (LSC), in Spain. The commission…
The Next White (NEW) detector
2018
[EN] Conceived to host 5 kg of xenón at a pressure of 15 bar in the ¿ducial volume,the NEXTWhite (NEW)apparatus is currently the largest high pressure xenon gas TPC using electroluminescent ampli¿cation in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for ßß0¿ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas puri…
Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100
2017
We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…
The distributed Slow Control System of the XENON100 experiment
2012
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recordi…
Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data
2017
We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…
A new limit of the 129 Xenon Electric Dipole Moment
2019
We report on the first preliminary result of our 129Xe EDM measurement performed by the MIXed collaboration. The aim of this report is to demonstrate the feasibility of a new method to set limits on nuclear EDMs by investigating the EDM of the diamagnetic 129Xe atoms. In our setup, hyperpolarized 3He serves as a comagnetometer needed to suppress magnetic field fluctuations. The free induction decay of the two polarized spin species is directly measured by low noise DC SQUIDs, and the weighted phase difference extracted from these measurements is used to determine a preliminary upper limit on the 129Xe EDM.
New Beta-delayed Neutron Measurements in the Light-mass Fission Group
2014
A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.
Studies of Inelastic Scattering of Fast Heavy Ions
2003
In the present experiment 250A MeV O-17 ions were melastically scattered front xenon and argon in the cluster-jet target of the CELSIUS storage ring. The magnetic lattice of the ring is such that the quadrant following the target can be used as a magnetic spectrometer with an acceptance cone of +/-0.6degrees, centred at 0degrees. A focal plane telescope, placed in the injection straight section. determined the excitation energy of the residual target nuclei. Data were taken for excitation energies between 15 and 35 MeV. The neutron decay was studied by the EDEN detector array positioned around the target, covering an angular range of 7-110degrees. In order to investigate a previously observ…