Search results for "anodizing"

showing 10 items of 116 documents

ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting

2016

This work studies the photoelectrochemical behavior of novel ZnO/ZnS heterostructures obtained by means of anodization in water and glycerol/water/NH4F electrolytes with different Na2S additions under controlled hydrodynamic conditions. For this purpose different techniques such as Field Emission Scanning Electronic Microscopy (FE-SEM) with EDX, Raman spectroscopy and photoelectrochemical water splitting tests under standard AM 1.5 conditions have been carried out. The obtained results showed that the hydrodynamic conditions promoted an ordered nanotubular morphology which facilitates electron-hole separation and consequently, the photoelectrochemical activity for water splitting is enhance…

Materials scienceGeneral Chemical EngineeringInorganic chemistry02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeZINCRAMAN-SPECTROSCOPYANODIZATIONTIO2 NANOTUBESHydrogen productionAnodizingELECTROLYTESPHOTOCATALYTIC ACTIVITYHeterojunctionGeneral Chemistry021001 nanoscience & nanotechnologyHYDRODYNAMIC CONDITIONSEVOLUTION0104 chemical sciencesARRAYSElectroquímicaField electron emissionsymbolsWater splitting0210 nano-technologyRaman spectroscopySENSITIZED ZNODark current
researchProduct

Effect of plastic deformation on the anodic electroluminescence accompanying the early stage of electrolytic oxidation of cadmium

1995

CadmiumMaterials sciencechemistryTransition metalAnodizingMetallurgychemistry.chemical_elementMineralogyGeneral Materials ScienceStage (hydrology)ElectrolyteElectroluminescenceAnodeJournal of Materials Science Letters
researchProduct

High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications

2019

This study demonstrates a new, robust, and accessible deposition technique of metal nanoparticle arrays (NPAs), which uses nanoporous anodic alumina (NAA) as a template for capillary force-assisted convective colloid (40, 60, and 80 nm diameter Au) assembly. The NPA density and nanoparticle size can be independently tuned by the anodization conditions and colloid synthesis protocols. This enables production of non-touching variable-density NPAs with controllable gaps in the 20&ndash

Materials scienceGeneral Chemical EngineeringNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesArticleplasmonicslcsh:Chemistrysymbols.namesakeColloidporous anodic aluminum oxideGeneral Materials ScienceAbsorption (electromagnetic radiation)nanoparticle arraysPlasmonbusiness.industryNanoporousAnodizingSERShemoglobin021001 nanoscience & nanotechnology0104 chemical scienceslcsh:QD1-999symbolsOptoelectronicscolloid deposition0210 nano-technologybusinessRefractive indexRaman scatteringNanomaterials
researchProduct

Synergistic Use of Electrochemical Impedance Spectroscopy and Photoelectrochemical Measurements for Studying Solid State Properties of Anodic HfO2

2017

Within the past years, intense research has been carried out on HfO2 as high k material, promising candidate to replace SiO2 as gate dielectric in CMOS based devices (1), and as metal oxide for resistive random access memory (ReRAM) (2). For both technological applications compact, uniform and flat oxides are necessary, and a detailed understanding of their physical properties as a function of the fabrication conditions is strongly. Hafnia performance can be significantly influenced by carrier trapping taking place at pre-existing precursors states (induced by oxygen vacancies, interstitial ions, impurities acting as dopants), or by self-trapping in a perfect lattice, where the potential we…

EngineeringSettore ING-IND/23 - Chimica Fisica Applicataanodizing HfO2 CMOS ReRAM Electrochemical Impedance Spectroscopy Photoelectrochemical Measurements Solid State Propertiesbusiness.industrySolid-stateAnodizing Hafnium oxide Nb doped HfO2 Electrochemical Impedance Spectroscopy Photocurrent Spectroscopy Solid State Properties CMOS ReRAMNanotechnologybusinessAnodeDielectric spectroscopy
researchProduct

Electrochemically prepared oxides for resistive switching devices

2018

Redox-based resistive switching memories (ReRAM) based on metal oxides are considered as the next generation non-volatile memories and building units for neuromorphic computing. Using different deposition techniques results however in different structural and electric properties, modulating the device performance. In this study HfO2 and Nb2O5 were prepared electrochemically by anodizing sputtering-deposited Hf and Nb in borate buffer solution. Photoelectrochemical measurements were used to study the solid state properties of the anodic oxides, such as band gap and flat band potential. In the case of anodic HfO2, detected photocurrent is ascribed to optical transitions between localized (gen…

Nb oxideReRAMGeneral Chemical Engineering02 engineering and technologyAnodizing010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemistryHf oxideResistive switchingChemical Engineering (all)0210 nano-technologyElectrochimica Acta
researchProduct

Influence of annealing conditions on the photoelectrocatalytic performance of WO3 nanostructures

2020

[EN] Nanostructured WO3 photoanodes have been synthesized by electrochemical anodization under controlled hydrodynamic conditions in acidic media in the presence of 0.05 M H2O2. Subsequently, samples have been subjected to a thermal treatment (annealing) at different temperatures (400 degrees C, 500 degrees C and 600 degrees C) and under different gaseous atmospheres (air, N-2, Ar). The influence of these annealing conditions on the morphology, crystallinity, photoelectrochemical behavior and dopant chemistry of the different photoanodes has been investigated through Electronic Microscopy, Raman Spectroscopy, Photoelectrochemical Impedance Spectroscopy and Mott-Schottky analysis. In general…

NanostructureMaterials scienceAnnealing (metallurgy)Filtration and Separation02 engineering and technologyThermal treatmentINGENIERIA QUIMICAAnalytical ChemistryCrystallinitysymbols.namesake020401 chemical engineering0204 chemical engineeringNanoestructuresDopantAnodizingAnnealing conditionsPhotoelectrochemical impedance spectroscopy (PEIS)021001 nanoscience & nanotechnologyWO3 nanostructuresDielectric spectroscopyElectroquímicaChemical engineeringsymbolsAnodization0210 nano-technologyRaman spectroscopyPhotoanodeSeparation and Purification Technology
researchProduct

2017

Abstract Chromic acid anodizing is important for the corrosion protection of aerospace aluminium alloys. Previous study has demonstrated that SO 4 2 − impurity in the chromic acid affects the film growth on aluminium at a voltage of 100 V. The present work further investigates aluminium and extends the study to industrial anodizing conditions (Bengough-Stuart (B-S) process) and to the AA 2024-T3 alloy. It is shown that SO 4 2 − concentrations between ~ 38–300 ppm reduce the film growth rate for aluminium anodized at 100 V in comparison with an electrolyte than contains ≤ 1.5 ppm SO 4 2 − , whereas ~ 1500–3000 ppm SO 4 2 have an opposite effect and lead to an unstable pore diameter. Under th…

Materials scienceAlloychemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesCorrosionchemistry.chemical_compoundAluminiumMaterials Chemistry5052 aluminium alloyChromate conversion coatingAnodizingMetallurgySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmschemistryChromic acidengineering6063 aluminium alloy0210 nano-technologySurface and Coatings Technology
researchProduct

Visible-light photoelectrodegradation of diuron on WO3 nanostructures

2018

[EN] The degradation of pesticide diuron has been explored by photoelectrocatalysis (PEC) under visible light illumination using two different WO3 nanostructures, obtained by anodization of tungsten. The highest degradation efficiency (73%) was obtained for WO3 nanosheets synthesized in the presence of small amounts of hydrogen peroxide (0.05 M). For that nanostructure, the kinetic coefficient for diuron degradation was 133% higher than that for the other nanostructure (anodized in the presence of fluoride anions). These results have been explained by taking into account the different architecture and dimensions of the two WO3 nanostructures under study.

Environmental EngineeringMaterials scienceNanostructurechemistry.chemical_element02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawTungsten01 natural sciencesINGENIERIA QUIMICAchemistry.chemical_compoundPesticidesHydrogen peroxideWaste Management and Disposal0105 earth and related environmental sciencesNanoestructuresAnodizingGeneral Medicine021001 nanoscience & nanotechnologyWO3 nanostructures AnodizationElectroquímicachemistryChemical engineeringDiuronKinetic coefficientDegradation (geology)Photoelectrocatalysis0210 nano-technologyFluorideVisible spectrum
researchProduct

Growth and Characterization of Anodic Films on Al-Nb Alloys

2006

Abstract The anodizing behaviours of sputtering-deposited aluminium, niobium and Al-Nb alloys, containing 0.4, 7.5, 21, 40 and 55 at.% niobium, have been examined in 0.1 M ammonium pentaborate electrolyte with interest in the morphology, structure and electronic properties of the anodic oxides. Transmission electron microscopy revealed amorphous oxides, containing units of Nb2O5 and Al2O3, with formation ratios intermediate between those of anodic alumina and anodic niobia. Photocurrent spectroscopy provided increased understanding of the electronic properties of the anodic films, suggesting the formation of “mixed oxides” with insulating behaviours. The estimated band gap values are correl…

PhotocurrentMaterials scienceAnodizingBand gapMetallurgyNiobiumchemistry.chemical_elementPCS TEMElectrolyteAmorphous solidChemical engineeringchemistryAluminiumTransmission electron microscopy
researchProduct

Plasma Electrolytic Oxidation of TiZr Alloy in ZnONPs-Contained Solution: Structural and Biological Assessment

2020

Titanium (Ti) and its alloys with zirconium (Zr) due of their biological safety, lower elastic modulus and excellent corrosion resistance are the most attractive metallic materials for medical applications. Plasma electrolytic oxidation (PEO) is an environment-friendly process with rapid deposition of anodic oxide coating on the implant surface. PEO coating can incorporate different nanoparticles (NPs) into implant surface such as ZnO that stimulates osteoblast proliferation and mineralization, possesses antibacterial ability. The aim of current research was to evaluate structural and chemical properties of TiZr-alloy with addition ZnO NPs after the PEO in Ca/P solution. The alloy of the Ti…

Materials scienceBiocompatibilityAnodizingtechnology industry and agricultureOxideNanoparticlechemistry.chemical_elementPlasma electrolytic oxidationSilver nanoparticlechemistry.chemical_compoundchemistryChemical engineeringSurface modificationTitanium
researchProduct