Search results for "approximation"

showing 10 items of 818 documents

Temperature-dependent resistivity and anomalous Hall effect in NiMnSb from first principles

2019

We present implementation of the alloy analogy model within fully relativistic density-functional theory with the coherent potential approximation for a treatment of nonzero temperatures. We calculate contributions of phonons and magnetic and chemical disorder to the temperature-dependent resistivity, anomalous Hall conductivity (AHC), and spin-resolved conductivity in ferromagnetic half-Heusler NiMnSb. Our electrical transport calculations with combined scattering effects agree well with experimental literature for Ni-rich NiMnSb with 1--2% Ni impurities on Mn sublattice. The calculated AHC is dominated by the Fermi surface term in the Kubo-Bastin formula. Moreover, the AHC as a function o…

Materials scienceCondensed matter physicsSpin polarizationPhononFermi surface02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceFerromagnetismHall effectElectrical resistivity and conductivity0103 physical sciencesCoherent potential approximation010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Some considerations on the transmissivity of trirefringent metamaterials

2016

Nonlocal effects in metal–dielectric (MD) periodic nanostructures may typically be observed when the plasmonic particles and gaps are on the scale of a few tens of nanometers, enabling under certain conditions (succinctly for epsilon near zero) a collimated beam to split into three refracted signals. We developed a method for precisely evaluating the categorized transmissivity in an air/trirefringent metamaterial interface, which uses a fast one-dimensional Fourier transform and finite element solvers of Maxwell’s equations. In periodic arrays of MD nanofilms, it is proved a tunable transmissivity switch of the multirefracted beams under varying angle of incidence and wavelength, while keep…

Materials sciencePhysics::OpticsEffective medium theory02 engineering and technologyNumerical approximation and analysis01 natural sciencesCollimated light010309 opticsSplit-ring resonatorsymbols.namesakeOptics0103 physical sciencesPlasmonNanomaterialsÓpticabusiness.industryMetamaterialStatistical and Nonlinear Physics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFinite element methodWavelengthFourier transformAngle of incidence (optics)symbols0210 nano-technologybusiness
researchProduct

Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII

2016

The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and iterative solution of the linearized Boltzmann transport equation(BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than silicon diamond structure (d-Si) by factors of 1/2 and 1/5, respectively. The main reason for the lower lattice thermal conductivity of the clathrate structure II in comparison to d-Si was found to be the harmonic phonon spectra, while in the case of the clathrate structure VIII, the difference is mainly due to the harmonic phonon spe…

Materials scienceSiliconPhononClathrate hydrateAb initioSOLIDSchemistry.chemical_elementFOS: Physical sciences02 engineering and technology01 natural sciencesSEMICONDUCTORSLOW TEMPERATURESCondensed Matter::Materials Sciencesilicon clathrate frameworks0103 physical sciencesEQUATIONDiamond cubicSIPHONON DISPERSIONS010306 general physicsta116Condensed Matter - Materials ScienceCondensed matter physicsta114CRYSTALAnharmonicitylattice thermal conductivityMaterials Science (cond-mat.mtrl-sci)Atmospheric temperature range021001 nanoscience & nanotechnologyBoltzmann equationGENERALIZED GRADIENT APPROXIMATIONMODELchemistry0210 nano-technology
researchProduct

On Equivalent Random Traffic method extension

2011

The key result of the paper is the Equivalent Random Traffic (ERT) method extension for estimation of the throughput for schemes with traffic splitting. The excellent accuracy (relative error is less than 1%) is shown in numerical example. A numerical algorithm is given — how to estimate the throughput for schemes at traffic splitting and merging. The paper also contains new Erlang-B formula algorithm for non-integer number of channels based on parabolic approximation.

Mathematical optimizationApproximation errorTelecommunication channelsNumerical analysisComputer Science::Networking and Internet ArchitectureKey (cryptography)Integrated opticsExtension (predicate logic)Throughput (business)Erlang (unit)AlgorithmMathematics2011 Baltic Congress on Future Internet and Communications
researchProduct

PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization

2014

We introduce a novel approximation method for multiobjective optimization problems called PAINT–SiCon. The method can construct consistent parametric representations of Pareto sets, especially for nonconvex problems, by interpolating between nondominated solutions of a given sampling both in the decision and objective space. The proposed method is especially advantageous in computationally expensive cases, since the parametric representation of the Pareto set can be used as an inexpensive surrogate for the original problem during the decision making process. peerReviewed

Mathematical optimizationControl and OptimizationApplied MathematicsMathematicsofComputing_NUMERICALANALYSISPareto principleSampling (statistics)Management Science and Operations ResearchSpace (mathematics)Multi-objective optimizationComputer Science ApplicationsNonlinear programmingSet (abstract data type)piecewise linear approximationmultiple criteria programmingnonlinear programmingRepresentation (mathematics)Parametric statisticsMathematicsJournal of Global Optimization
researchProduct

Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems

2015

This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed

Mathematical optimizationControl and OptimizationMathematicsofComputing_NUMERICALANALYSISFinite element approximations010103 numerical & computational mathematicsType (model theory)01 natural sciencesparabolic time-periodic optimal control problemsError analysisFOS: MathematicsApplied mathematicsMathematics - Numerical AnalysisNumerical testsfunctional a posteriori error estimates0101 mathematicsMathematics - Optimization and Control49N20 35Q61 65M60 65F08Mathematicsta113Time periodicta111Numerical Analysis (math.NA)State (functional analysis)Optimal controlComputer Science Applications010101 applied mathematicsOptimization and Control (math.OC)multiharmonic finite element methodsSignal ProcessingA priori and a posterioriAnalysisNumerical Functional Analysis and Optimization
researchProduct

Team Theory and Person-by-Person Optimization with Binary Decisions

2012

In this paper, we extend the notion of person-by-person (pbp) optimization to binary decision spaces. The novelty of our approach is the adaptation to a dynamic team context of notions borrowed from the pseudo-boolean optimization field as completely local-global or unimodal functions and submodularity. We also generalize the concept of pbp optimization to the case where groups of $m$ decisions makers make joint decisions sequentially, which we refer to as $m$b$m$ optimization. The main contribution is a description of sufficient conditions, verifiable in polynomial time, under which a pbp or an $m$b$m$ optimization algorithm converges to the team-optimum. As a second contribution, we prese…

Mathematical optimizationControl and Optimizationcontrol optimizationBinary decision diagramApplied MathematicsTeam Theory; Person-by-Person Optimization; Pseudo-Boolean OptimizationApproximation algorithmState vectorTeam TheoryPerson-by-Person OptimizationSubmodular set functionVector optimizationPseudo-Boolean OptimizationComplete informationSettore MAT/09 - Ricerca OperativaGreedy algorithmTime complexityMathematicsSIAM Journal on Control and Optimization
researchProduct

Fully Polynomial Time Approximation Scheme for the Two-Parallel Capacitated Machines Scheduling Problem Under Unavailability Constraint

2010

Abstract Decision Support Systems (DSS) ensure the computer-based support for the conscientious decision-making in solving problems that require a large amount of information processing and complex scenarios. DSS for Transportation (DSST) are intelligent systems that are used at operational and organizational management levels. Operating a DSST in a public transportation web-based monitoring system is presented in this paper.

Mathematical optimizationDecision support systemJob shop schedulingbusiness.industryDistributed computingIntelligent decision support systemInformation processingGeneral MedicinePolynomial-time approximation schemeConstraint (information theory)Public transportUnavailabilitybusinessMathematicsIFAC Proceedings Volumes
researchProduct

Moving Least Squares Innovative Strategies For Sheet Forming Design

2011

In the last years a great interest in optimization algorithms aimed to design forming processes was demonstrated by many researches. Proper design methodologies to reduce times and costs have to be developed mostly based on computer aided procedures. Response surface methods (RSM) proved their effectiveness in the recent years also for the application in sheet metal forming aiming to reduce the number of numerical simulations. Actually, the main drawback of such method is the number of direct problem to be solved in order to reach good function approximations. A very interesting aspect in RSM application regards the possibility to build response surfaces basing on moving least squares appro…

Mathematical optimizationEngineeringOptimization problemComputer simulationbusiness.industryForming processesFunction approximationSheet metal forming design moving least squares optimizationvisual_artvisual_art.visual_art_mediumCurve fittingMoving least squaresSheet metalbusinessSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneInterpolationAIP Conference Proceedings
researchProduct

A contribution on the optimization strategies based on moving least squares approximation for sheet metal forming design

2012

Computer-aided procedures to design and optimize forming processes are, nowadays, crucial research topics since industrial interest in costs and times reduction is always increasing. Many researchers have faced this research challenge with various approaches. Response surface methods (RSM) are probably the most known approaches since they proved their effectiveness in the recent years. With a peculiar attention to sheet metal forming process design, RSM should offer the possibility to reduce the number of numerical simulations which in many cases means to reduce design times and complexity. Actually, the number of direct problems (FEM simulations) to be solved in order to reach good functio…

Mathematical optimizationEngineeringOptimization problembusiness.industryMechanical EngineeringForming processesComputer aided optimizationSheet metal formingIndustrial and Manufacturing EngineeringComputer Science ApplicationsReduction (complexity)Function approximationControl and Systems Engineeringvisual_artKey (cryptography)visual_art.visual_art_mediumZoomMoving least squaresMoving least squares methodologySheet metalbusinessSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSoftware
researchProduct