Search results for "approximation"

showing 10 items of 818 documents

Time-dependent weak rate of convergence for functions of generalized bounded variation

2016

Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$

Statistics and ProbabilityApproximation using simple random walkweak rate of convergence01 natural sciencesStochastic solution41A25 65M15 (Primary) 35K05 60G50 (Secondary)010104 statistics & probabilityExponential growthFOS: Mathematics0101 mathematicsBrownian motionstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysisfinite difference approximation of the heat equationFunction (mathematics)Rate of convergenceBounded functionBounded variationnumeerinen analyysiapproksimointiStatistics Probability and UncertaintyMathematics - ProbabilityStochastic Analysis and Applications
researchProduct

A fast and recursive algorithm for clustering large datasets with k-medians

2012

Clustering with fast algorithms large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a sequential version of the $k$-means algorithm, a new class of recursive stochastic gradient algorithms designed for the $k$-medians loss criterion is proposed. By their recursive nature, these algorithms are very fast and are well adapted to deal with large samples of data that are allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the set of stationary points of the underlying loss criterion. A particular attention is paid to the averaged versions, which…

Statistics and ProbabilityClustering high-dimensional dataFOS: Computer and information sciencesMathematical optimizationhigh dimensional dataMachine Learning (stat.ML)02 engineering and technologyStochastic approximation01 natural sciencesStatistics - Computation010104 statistics & probabilityk-medoidsStatistics - Machine Learning[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]stochastic approximation0202 electrical engineering electronic engineering information engineeringComputational statisticsrecursive estimatorsAlmost surely[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsCluster analysisComputation (stat.CO)Mathematicsaveragingk-medoidsRobbins MonroApplied MathematicsEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]stochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]MedoidComputational MathematicsComputational Theory and Mathematicsonline clustering020201 artificial intelligence & image processingpartitioning around medoidsAlgorithm
researchProduct

Fast and universal estimation of latent variable models using extended variational approximations

2022

AbstractGeneralized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ecology. One of the main features of GLLVMs is their capacity to handle a variety of responses types, such as (overdispersed) counts, binomial and (semi-)continuous responses, and proportions data. On the other hand, the inclusion of unobserved latent variables poses a major computational challenge, as the resulting marginal likelihood function involves an intractable integral for non-normally distributed responses. This has spurred research into a number of approx…

Statistics and ProbabilityComputational Theory and Mathematicsmultivariate abundance datamuuttujatlaplace approximationmulti-response dataordinationStatistics Probability and Uncertaintyvariational approximationsgeneralized linear latent variable modelsestimointiTheoretical Computer ScienceStatistics and Computing
researchProduct

Modeling accident risk at the road level through zero-inflated negative binomial models: A case study of multiple road networks

2021

Abstract This paper presents a case study carried out in multiple cities of the Valencian Community (Spain) to determine the effect of sociodemographic and road characteristics on traffic accident risk. The analyzes are performed at the road segment level, considering the linear network representing the road structure of each city as a spatial lattice. The number of accidents observed in each road segment from 2010 to 2019 is taken as the response variable, and a zero-inflated modeling approach is considered. Count overdispersion and spatial dependence are also accounted for. Despite the complexity and sparsity of the data, the fitted models performed considerably well, with few exceptions.…

Statistics and ProbabilityComputer sciencespatial dependence0208 environmental biotechnologyAccident riskMagnitude (mathematics)Distribution (economics)02 engineering and technologyManagement Monitoring Policy and Law01 natural sciencestraffic accidents010104 statistics & probabilityOverdispersionCovariateStatisticsZero-inflated model0101 mathematicsComputers in Earth SciencesSpatial dependencelattice structurebusiness.industryIntegrated Nested Laplace Approximationzero-inflated model020801 environmental engineeringVariable (computer science)linear networksbusiness
researchProduct

MLML2R: an R package for maximum likelihood estimation of DNA methylation and hydroxymethylation proportions.

2019

Abstract Accurately measuring epigenetic marks such as 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) at the single-nucleotide level, requires combining data from DNA processing methods including traditional (BS), oxidative (oxBS) or Tet-Assisted (TAB) bisulfite conversion. We introduce the R package MLML2R, which provides maximum likelihood estimates (MLE) of 5-mC and 5-hmC proportions. While all other available R packages provide 5-mC and 5-hmC MLEs only for the oxBS+BS combination, MLML2R also provides MLE for TAB combinations. For combinations of any two of the methods, we derived the pool-adjacent-violators algorithm (PAVA) exact constrained MLE in analytical form. For the…

Statistics and ProbabilityDNA HydroxymethylationEpigenomicsIterative methodMaximum likelihood03 medical and health sciencessymbols.namesake0302 clinical medicineGeneticsHumansMolecular Biology030304 developmental biologyMathematics0303 health sciencesLikelihood FunctionsComputational BiologyHigh-Throughput Nucleotide SequencingProbability and statisticsDNA MethylationComputational MathematicsR packageLagrange multiplierDNA methylationsymbolsIterative approximationAlgorithm030217 neurology & neurosurgeryStatistical applications in genetics and molecular biology
researchProduct

Mean square rate of convergence for random walk approximation of forward-backward SDEs

2020

AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…

Statistics and ProbabilityDiscretizationapproximation schemeMalliavin calculus01 natural sciences010104 statistics & probabilityconvergence rateMathematics::ProbabilityConvergence (routing)random walk approximation 2010 Mathematics Subject Classification: Primary 60H10FOS: MathematicsApplied mathematics0101 mathematicsBrownian motionrandom walk approximationMathematicsstokastiset prosessitSmoothness (probability theory)konvergenssiApplied Mathematics010102 general mathematicsProbability (math.PR)Backward stochastic differential equationsFunction (mathematics)Random walkfinite difference equation[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equations60G50 Secondary 60H3060H35approksimointidifferentiaaliyhtälötMathematics - Probability
researchProduct

On the use of asymptotic expansion in computing the null distribution of page's L-statistic

1989

Suppose that each out of n randomized complete blocks is obtained by observing a jointly continuous random variable taking values in Rk. Page's L-statistic is given then as a sum of i.i.d. lattice variables with finite moments of any order. Applying a well-known theorem on asymptotic expansions for the distribution function of such a sum yields higher order approximations to the significance probability of any observed value of L. The formula obtained by discarding terms smaller than o(n –1) is still very simple to use. Yet, due to it's strong analytical basis, it can be expected to provide substantial improvement on the traditional normal approximation. The results of extensive numerical i…

Statistics and ProbabilityDistribution functionApproximation errorModeling and SimulationLattice (order)Numerical analysisStatisticsNull distributionAsymptotic expansionRandom variableStatisticMathematicsCommunications in Statistics - Simulation and Computation
researchProduct

Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models

2021

In ecological community studies it is often of interest to study the effect of species related trait variables on abundances or presence-absences. Specifically, the interest may lay in the interactions between environmental and trait variables. An increasingly popular approach for studying such interactions is to use the so-called fourth-corner model, which explicitly posits a regression model where the mean response of each species is a function of interactions between covariate and trait predictors (among other terms). On the other hand, many of the fourth-corner models currently applied in the literature are too simplistic to properly account for variation in environmental and trait resp…

Statistics and ProbabilityEcological ModelingLatent variableeliöyhteisötcommunity analysisGeneralized linear mixed modelekologiajoint species distribution modelgeneralized linear mixed modelmultivariate abundance datamonimuuttujamenetelmätCommunity analysisEconometricsTraitvariational approximationtilastolliset mallitfourth-corner problemympäristönmuutoksetMathematics
researchProduct

Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?

2011

The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[ S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away …

Statistics and ProbabilityFOS: Computer and information sciencesIdentity matrixMathematics - Statistics TheoryStatistics Theory (math.ST)Upper and lower boundsStatistics - Computation93E3593E15Combinatorics60J27Mathematics::ProbabilityLaw of large numbers65C40 60J27 93E15 93E35stochastic approximationFOS: MathematicsEigenvalues and eigenvectorsComputation (stat.CO)Metropolis algorithmMathematicsProbability (math.PR)Zero (complex analysis)CovariancestabilityUniform continuityBounded function65C40Statistics Probability and Uncertaintyadaptive Markov chain Monte CarloMathematics - Probability
researchProduct

Fractional Brownian motion and Martingale-differences

2004

Abstract We generalize a result of Sottinen (Finance Stochastics 5 (2001) 343) by proving an approximation theorem for the fractional Brownian motion, with H> 1 2 , using martingale-differences.

Statistics and ProbabilityGeometric Brownian motionFractional Brownian motionMathematics::ProbabilityDiffusion processReflected Brownian motionMathematical analysisBrownian excursionStatistics Probability and UncertaintyHeavy traffic approximationMartingale (probability theory)Martingale representation theoremMathematicsStatistics & Probability Letters
researchProduct