Search results for "approximation"
showing 10 items of 818 documents
Time-dependent weak rate of convergence for functions of generalized bounded variation
2016
Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$
A fast and recursive algorithm for clustering large datasets with k-medians
2012
Clustering with fast algorithms large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a sequential version of the $k$-means algorithm, a new class of recursive stochastic gradient algorithms designed for the $k$-medians loss criterion is proposed. By their recursive nature, these algorithms are very fast and are well adapted to deal with large samples of data that are allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the set of stationary points of the underlying loss criterion. A particular attention is paid to the averaged versions, which…
Fast and universal estimation of latent variable models using extended variational approximations
2022
AbstractGeneralized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ecology. One of the main features of GLLVMs is their capacity to handle a variety of responses types, such as (overdispersed) counts, binomial and (semi-)continuous responses, and proportions data. On the other hand, the inclusion of unobserved latent variables poses a major computational challenge, as the resulting marginal likelihood function involves an intractable integral for non-normally distributed responses. This has spurred research into a number of approx…
Modeling accident risk at the road level through zero-inflated negative binomial models: A case study of multiple road networks
2021
Abstract This paper presents a case study carried out in multiple cities of the Valencian Community (Spain) to determine the effect of sociodemographic and road characteristics on traffic accident risk. The analyzes are performed at the road segment level, considering the linear network representing the road structure of each city as a spatial lattice. The number of accidents observed in each road segment from 2010 to 2019 is taken as the response variable, and a zero-inflated modeling approach is considered. Count overdispersion and spatial dependence are also accounted for. Despite the complexity and sparsity of the data, the fitted models performed considerably well, with few exceptions.…
MLML2R: an R package for maximum likelihood estimation of DNA methylation and hydroxymethylation proportions.
2019
Abstract Accurately measuring epigenetic marks such as 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) at the single-nucleotide level, requires combining data from DNA processing methods including traditional (BS), oxidative (oxBS) or Tet-Assisted (TAB) bisulfite conversion. We introduce the R package MLML2R, which provides maximum likelihood estimates (MLE) of 5-mC and 5-hmC proportions. While all other available R packages provide 5-mC and 5-hmC MLEs only for the oxBS+BS combination, MLML2R also provides MLE for TAB combinations. For combinations of any two of the methods, we derived the pool-adjacent-violators algorithm (PAVA) exact constrained MLE in analytical form. For the…
Mean square rate of convergence for random walk approximation of forward-backward SDEs
2020
AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…
On the use of asymptotic expansion in computing the null distribution of page's L-statistic
1989
Suppose that each out of n randomized complete blocks is obtained by observing a jointly continuous random variable taking values in Rk. Page's L-statistic is given then as a sum of i.i.d. lattice variables with finite moments of any order. Applying a well-known theorem on asymptotic expansions for the distribution function of such a sum yields higher order approximations to the significance probability of any observed value of L. The formula obtained by discarding terms smaller than o(n –1) is still very simple to use. Yet, due to it's strong analytical basis, it can be expected to provide substantial improvement on the traditional normal approximation. The results of extensive numerical i…
Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models
2021
In ecological community studies it is often of interest to study the effect of species related trait variables on abundances or presence-absences. Specifically, the interest may lay in the interactions between environmental and trait variables. An increasingly popular approach for studying such interactions is to use the so-called fourth-corner model, which explicitly posits a regression model where the mean response of each species is a function of interactions between covariate and trait predictors (among other terms). On the other hand, many of the fourth-corner models currently applied in the literature are too simplistic to properly account for variation in environmental and trait resp…
Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?
2011
The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[ S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away …
Fractional Brownian motion and Martingale-differences
2004
Abstract We generalize a result of Sottinen (Finance Stochastics 5 (2001) 343) by proving an approximation theorem for the fractional Brownian motion, with H> 1 2 , using martingale-differences.