Search results for "asymptotic expansion"

showing 10 items of 38 documents

Complex powers of elliptic pseudodifferential operators

1986

The aim of this paper is the construction of complex powers of elliptic pseudodifferential operators and the study of the analytic properties of the corresponding kernels kS (x,y). For x=y, the case of principal interest, the domain of holomorphy and the singularities of kS (x,x) are shown to depend on the asymptotic expansion of the symbol. For classical symbols, kS (x,x) is known to be meromorphic on ℂ with simple poles in a set of equidistant points on the real axis. In the more general cases considered here, the singularities may be distributed over a half plane and kS (x,x) can not always be extended to337-2. An example is given where kS (x,x) has a vertical line as natural boundary.

Algebra and Number TheorySimple (abstract algebra)Plane (geometry)Mathematical analysisDomain of holomorphyBoundary (topology)Gravitational singularityAsymptotic expansionComplex planeAnalysisMeromorphic functionMathematicsIntegral Equations and Operator Theory
researchProduct

Zero Viscosity Limit for Analytic Solutions of the Primitive Equations

2016

The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.

Analysis; Mathematics (miscellaneous); Mechanical EngineeringMechanical Engineering010102 general mathematicsMathematical analysisZero (complex analysis)Analysi01 natural scienceslaw.inventionEuler equations010101 applied mathematicsViscositysymbols.namesakeBoundary layerMathematics (miscellaneous)lawPrimitive equationssymbolsLimit (mathematics)0101 mathematicsHydrostatic equilibriumAsymptotic expansionAnalysisMathematics
researchProduct

Almost Planar Homoclinic Loops in R3

1996

AbstractIn this paper we study homoclinic loops of vector fields in 3-dimensional space when the two principal eigenvalues are real of opposite sign, which we call almost planar. We are interested to have a theory for higher codimension bifurcations. Almost planar homoclinic loop bifurcations generically occur in two versions “non-twisted” and “twisted” loops. We consider high codimension homoclinic loop bifurcations under generic conditions. The generic condition forces the existence of a 2-dimensional topological invariant ring (non necessarily unique), which is a topological cylinder in the “non-twisted” case and a topological Möbius band in the “twisted” case. If the third eigenvalue is…

Applied Mathematics010102 general mathematicsMathematical analysisCodimensionFixed point01 natural sciences010101 applied mathematicsNonlinear Sciences::Chaotic Dynamicssymbols.namesakesymbolsHomoclinic bifurcationHomoclinic orbitMöbius strip0101 mathematicsInvariant (mathematics)Asymptotic expansionEigenvalues and eigenvectorsAnalysisMathematicsJournal of Differential Equations
researchProduct

Asymptotic stability of solutions to Volterra-renewal integral equations with space maps

2012

Abstract In this paper we consider linear Volterra-renewal integral equations (VIEs) whose solutions depend on a space variable, via a map transformation. We investigate the asymptotic properties of the solutions, and study the asymptotic stability of a numerical method based on direct quadrature in time and interpolation in space. We show its properties through test examples.

Asymptotic analysisApplied MathematicsNumerical analysisMathematical analysisvolterra renewalSpace mapVolterra integral equationMethod of matched asymptotic expansionsIntegral equationVolterra integral equationAsymptotic behaviorsymbols.namesakeExponential stabilityRenewal equationAsymptotologysymbolsNyström methodNumerical methodsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

Application of the star-product method to the angular momentum quantization

1992

We define a *-product on ℝ3 and solve the polarization equation f*C=0 where C is the Casimir of the coadjoint representation of SO(3). We compute the action of SO(3) on the space of solutions. We then examine the case of non-zero eigenvalues of C, in order to find finite-dimensional representations of SO(3). Finally, we compute \(\sqrt C *\sqrt C \) as an asymptotic series of C. This gives an explanation of the use of the star square root of C in a paper by Bayen et al. instead of its natural square root.

Casimir effectAngular momentumQuantization (physics)Coadjoint representationSquare rootStar productStatistical and Nonlinear PhysicsGeometryAsymptotic expansionMathematical PhysicsEigenvalues and eigenvectorsMathematicsMathematical physicsLetters in Mathematical Physics
researchProduct

Solutions of nonlinear PDEs in the sense of averages

2012

Abstract We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all pʼs. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 p ∞ .

Class (set theory)Mean value theoremMathematics(all)Dynamic programming principleGeneral MathematicsAsymptotic expansion01 natural sciences1-harmonicApplied mathematics0101 mathematicsMathematicsp-harmonicApplied Mathematics010102 general mathematicsMathematical analysista111Zero (complex analysis)Sense (electronics)010101 applied mathematicsNonlinear systemRange (mathematics)Two-player zero-sum gamesMean value theorem (divided differences)Viscosity solutionsAsymptotic expansionValue (mathematics)Stochastic gamesJournal de Mathématiques Pures et Appliquées
researchProduct

On lacunary Toeplitz determinants

2014

By using Riemann--Hilbert problem based techniques, we obtain the asymptotic expansion of lacunary Toeplitz determinants $\det_N\big[ c_{\ell_a-m_b}[f] \big]$ generated by holomorhpic symbols, where $\ell_a=a$ (resp. $m_b=b$) except for a finite subset of indices $a=h_1,\dots, h_n$ (resp. $b=t_1,\dots, t_r$). In addition to the usual Szeg\"{o} asymptotics, our answer involves a determinant of size $n+r$.

CombinatoricsGeneral MathematicsAsymptotic expansionLacunary functionToeplitz matrixMathematicsA determinantAsymptotic Analysis
researchProduct

Identification of small inhomogeneities: Asymptotic factorization

2007

We consider the boundary value problem of calculating the electrostatic potential for a homogeneous conductor containing finitely many small insulating inclusions. We give a new proof of the asymptotic expansion of the electrostatic potential in terms of the background potential, the location of the inhomogeneities and their geometry, as the size of the inhomogeneities tends to zero. Such asymptotic expansions have already been used to design direct (i.e. noniterative) reconstruction algorithms for the determination of the location of the small inclusions from electrostatic measurements on the boundary, e.g. MUSIC-type methods. Our derivation of the asymptotic formulas is based on integral …

Computational MathematicsAlgebra and Number TheoryPartial differential equationFactorizationApplied MathematicsNumerical analysisMathematical analysisBoundary (topology)Boundary value problemInverse problemAsymptotic expansionIntegral equationMathematicsMathematics of Computation
researchProduct

On the time function of the Dulac map for families of meromorphic vector fields

2003

Given an analytic family of vector fields in Bbb R2 having a saddle point, we study the asymptotic development of the time function along the union of the two separatrices. We obtain a result (depending uniformly on the parameters) which we apply to investigate the bifurcation of critical periods of quadratic centres.

Differential equationApplied MathematicsMathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsQuadratic equationSaddle pointtime-map; quadratic centresDevelopment (differential geometry)Vector fieldAsymptotic expansionMathematical PhysicsBifurcationMathematicsMeromorphic functionNonlinearity
researchProduct