Search results for "batch reactor"

showing 10 items of 50 documents

Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with…

2019

Abstract Partial nitrification (PN) is a technically and economically effective solution for the treatment of wastewater featuring low C/N ratio, allowing to achieve approximately 25% energy saving and 40% carbon source for denitrification. This study investigated the effect of different carbon to nitrogen ratio (C/N) and ammonia loading rate (ALR) on PN performances in a sequencing batch reactor (SBR) treating landfill leachate with municipal wastewater. The aim was to find an optimum range for C/N and ALR to maximize PN performances. Results demonstrated that a proper balancing between ALR and C/N is crucial to achieve high PN efficiency. The results highlighted the existence of an optimu…

0106 biological sciencesEnvironmental EngineeringDenitrificationCarbon-to-nitrogen ratioBiomedical EngineeringBioengineeringSequencing batch reactor01 natural sciences03 medical and health sciencesAmmoniachemistry.chemical_compoundNitratelandfill leachate010608 biotechnologyLeachatedenitritationSBR030304 developmental biology0303 health sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientalePulp and paper industrynitrogen removalpartial nitrificationchemistryWastewaterNitrificationC/NBiotechnology
researchProduct

Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures

2019

Abstract A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio ac…

0106 biological sciencesEnvironmental EngineeringPHABioengineeringSequencing batch reactorWastewater treatment010501 environmental sciencesWastewater01 natural sciencesBioplasticPolyhydroxyalkanoateschemistry.chemical_compoundBioreactors010608 biotechnologyBiomassWaste Management and DisposalEffluent0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryPolyhydroxyalkanoatesExtraction (chemistry)Water resource recoveryGeneral MedicinePulp and paper industryLauric acidBioplasticWastewaterFermentationFermentationPlastics
researchProduct

The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity

2018

Abstract A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD⋅m −3 ⋅d −1 and a gradual increase of salinity (from 0.30 to 38 g NaCl − ⋅L −1 ) to promote a biological salt-adaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. Th…

0208 environmental biotechnologyHydrophobicitySequencing batch reactorFiltration and Separation02 engineering and technology010501 environmental sciences01 natural sciencesAcclimatizationNutrients removalAnalytical ChemistryAerobic granular sludge; EPS; Extracellular polymeric substances; Hydrophobicity; Nutrients removal; Saline wastewater; Analytical Chemistry; Filtration and SeparationExtracellular polymeric substanceExtracellular polymeric substanceOrganic matterFood science0105 earth and related environmental scienceschemistry.chemical_classificationSettore ICAR/03 - Ingegneria Sanitaria-Ambientale020801 environmental engineeringSalinitychemistryAerobic granular sludgeAerobic granulationNitrificationEPSSaline wastewaterAnaerobic exercise
researchProduct

Effect of Temperature on N2O and NO Emission in a Partial Nitrification SBR Treating Reject Wastewater

2017

Temperature is a very important parameter during nitritation, having a direct effect on ammonia oxidation rate (AOR) and enzymatic activities which relate to both N2O and NO emission. This study aims at investigating the effect of temperature on AOR, N2O and NO production in an enriched ammonia oxidizing bacteria (AOB) sequencing batch reactor (SBR) performing partial nitrification (PN) of synthetic reject wastewater. To achieve that, a SBR was subject to several shifts in temperature (in the range of 30 to 15 °C, 5 °C for each decrease). Cycle studies, which contain two aeration phases, were conducted under each temperature. The results showed that AOR specific exponentially correlates wit…

Ammonia oxidation rate Nitrous oxide Nitric oxide Reject wastewater TemperatureSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleInorganic chemistryNitrous OxideReject WastewaterTemperatureSequencing batch reactorAmmonia-oxidizing bacteriaNitrous oxideNitric Oxideequipment and suppliesPulp and paper industryAmmoniachemistry.chemical_compoundAmmonia Oxidation RatechemistryWastewaterNitrificationNo productionAeration
researchProduct

Efficient removal of bisphenol A from wastewaters: Catalytic wet air oxidation with Pt catalysts supported on Ce and Ce–Ti mixed oxides

2019

Catalytic wet air oxidation (CWAO) of an aqueous solution of bisphenol A (BPA) was investigated at 160 ℃ and 2.0 MPa of air in a batch reactor. Activity of supported platinum catalysts (2.5 wt%), prepared by wet impregnation, was compared with pure cerium and cerium–titanium oxide catalysts. Supported platinum catalysts showed higher activities in the removal of BPA than pure CeO2, Ce0.8Ti0.2O2 and Ce0.2Ti0.8O2. The oxidation reaction was followed the pseudo-first order rate law and the highest BPA removal, 97% and 95%, was achieved with Pt/CeO2 and Pt/Ce0.8Ti0.2O2 catalysts respectively. The CWAO of BPA aqueous solution was not a surface area specific reaction but the more important factor…

Bisphenol AAqueous solutionbisphenol ABatch reactorOxidechemistry.chemical_elementCatalysisCeriumchemistry.chemical_compoundchemistryXPSlcsh:TA401-492lcsh:Materials of engineering and construction. Mechanics of materialsCWAOplatinumWet oxidationPlatinumcerium–titaniumNuclear chemistryAIMS Materials Science
researchProduct

Calcium phosphate precipitation in a SBR operated for EBPR: interactions with the biological process.

2008

The aim of this paper is to study the precipitation process in a sequencing batch reactor (SBR) operated for EBPR (enhanced biological phosphorus removal) and the possible effects of this phosphorus precipitation in the biological process. Four experiments were carried out under different influent calcium concentration. The experimental results and the equilibrium study, based on the Saturation Index calculation, confirm that the process controlling the calcium behaviour in a SBR operated for EBPR is the calcium phosphate precipitation. This precipitation takes place at two stages initially precipitation of the ACP and later crystallization of HAP. Also the accumulation of phosphorus precip…

Calcium PhosphatesEnvironmental EngineeringPrecipitation (chemistry)PhosphorusInorganic chemistrychemistry.chemical_elementSequencing batch reactorCalciumHydrogen-Ion ConcentrationPhosphatelaw.inventionPhosphateschemistry.chemical_compoundEnhanced biological phosphorus removalBioreactorschemistryWastewaterlawChemical PrecipitationCrystallizationWater Science and TechnologyNuclear chemistryAcetic AcidWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct

Conversion of furfural to 2-methylfuran over CuNi catalysts supported on biobased carbon foams

2021

In this study, carbon foams prepared from the by-products of the Finnish forest industry, such as tannic acid and pine bark extracts, were examined as supports for 5/5% Cu/Ni catalysts in the hydrotreatment of furfural to 2-methylfuran (MF). Experiments were conducted in a batch reactor at 503 K and 40 bar H2. Prior to metal impregnation, the carbon foam from tannic acid was activated with steam (S1), and the carbon foam from pine bark extracts was activated with ZnCl2 (S2) and washed with acids (HNO3 or H2SO4). For comparison, a spruce-based activated carbon (AC) catalyst and two commercial AC catalysts as references were investigated. Compressive strength of the foam S2 was 30 times great…

Carbon nanofoamBatch reactorchemistry.chemical_elementkupari02 engineering and technology010402 general chemistryFurfural01 natural sciencesCatalysisCatalysischemistry.chemical_compoundkatalyytitTannic acidmedicinebiohiilicarbonGeneral Chemistrymechanical strengthfurfural021001 nanoscience & nanotechnology0104 chemical sciencesCu/Ni catalystvaahdotchemistrykatalyysisivutuotteet2-Methylfuran2-methylfurannikkeli0210 nano-technologybiobased foamsCarbonActivated carbonmedicine.drugNuclear chemistry
researchProduct

Electrocarboxylation of benzyl chlorides at silver cathode at the preparative scale level

2008

Abstract The electrocarboxylation of benzyl chlorides to the corresponding carboxylic acids performed at silver cathodes was investigated both theoretically and experimentally in order to find the influence of the operative parameters on the selectivity and on the Faradic efficiency of the process. Theoretical considerations were confirmed by the electrocarboxylation of 1-phenyl-1-chloroethane performed in undivided cells equipped with sacrificial anodes both in a bench-scale electrochemical batch reactor and in a continuous batch recirculation reaction system equipped with a parallel plate electrochemical cell. Selectivity and Faradic yields higher than 80% and 70%, respectively, were obta…

ChemistryGeneral Chemical EngineeringInorganic chemistryBatch reactorElectrochemistryElectrocatalystCathodelaw.inventionElectrochemical cellCarboxylationlawElectrochemistryAnhydrousSelectivity
researchProduct

Aerobic granular sludge treating shipboard slop: Analysis of total petroleum hydrocarbons loading rates on performances and stability

2018

Abstract The work focuses on the feasibility of treating slop with aerobic granular sludge. For this purpose, a 3.5 L granular sequencing batch reactor was activated and it was monitored for 156 days. The experimental campaign was divided into two periods, named Period I (100 days) and Period II (56 days). Total Petroleum Hydrocarbon (TPH) concentration in the slop was, on average, equal to 6.8 ± 1.5 mg L−1 and 13 ± 1.5 mg L−1 in Period I and Period II respectively. The obtained results during the first experimental period indicated that about 80 days were required to reach steady state with mature granules, when TPHs removal efficiency was approximately 90%. The results indicated that both…

ChromatographySettore ICAR/03 - Ingegneria Sanitaria-Ambientale0208 environmental biotechnologyBioengineeringSequencing batch reactor02 engineering and technology010501 environmental sciencesBiodegradationPulp and paper industry01 natural sciencesApplied Microbiology and BiotechnologyBiochemistry020801 environmental engineeringchemistry.chemical_compoundGranulationAdsorptionchemistryPetroleumTotal petroleum hydrocarbonSteady state (chemistry)Effluent0105 earth and related environmental sciencesAerobic granular sludge Salinity SBR Total petroleum hydrocarbons Slop
researchProduct

Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater

2017

Abstract Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L −1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal…

DenitrificationEnvironmental EngineeringAutochthonous-halophilic bacteriaNitrogen0208 environmental biotechnologySequencing batch reactor02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and LawWaste Disposal Fluid01 natural sciencesFish-canning wastewaterIndustrial wastewater treatmentBioreactorsBiomassWaste Management and DisposalSBR0105 earth and related environmental sciencesTotal suspended solidsSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryGeneral MedicinePulp and paper industryNitrification020801 environmental engineeringActivated sludgeWastewaterDenitrificationSewage treatmentNitrificationSaline wastewaterShortcut nitrification-denitrification
researchProduct