Search results for "benzoxaboroles"

showing 4 items of 4 documents

Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans

2020

Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin&reg

Antifungal AgentsStereochemistrySubstituentPharmaceutical Sciencechemistry.chemical_elementMicrobial Sensitivity Tests01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441030207 dermatology & venereal diseases03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compound0302 clinical medicinebenzoxaboroleslcsh:Organic chemistryDrug DiscoveryCandida albicansformylPhysical and Theoretical ChemistryCandida albicanschemistry.chemical_classificationTavaboroleKerydinMolecular Structurebiology010405 organic chemistryChemistryOrganic Chemistrybiology.organism_classificationpiperazine0104 chemical sciences<i>Candida albicans</i>PiperazineChemistry (miscellaneous)Heterocyclic amineFluorineMolecular MedicineAmine gas treatingantifungalMolecules
researchProduct

The influence of fluorine position on the properties of fluorobenzoxaboroles

2015

5-Fluoro-2,1-benzoxaborol-1(3H)-ol, a potent antifungal drug also known as Tavaborole or AN2690, has been compared with its three isomers in terms of its activity against several fungi as well as pKa and multinuclear NMR characterization. The molecular and crystal structure of 6-fluoro-2,1-benzoxaborol-1(3H)-ol was determined and compared with that of AN2690.

Boron CompoundsModels Molecularcrystal structureAntifungal AgentsMagnetic Resonance SpectroscopyHalogenationStereochemistryAntifungal drugchemistry.chemical_elementCrystal structureCrystallography X-RayBiochemistrybenzoxaborolesIsomerismDrug DiscoveryHumansMolecular BiologytavaboroleTavaboroleChemistryOrganic Chemistryantifungal activityFungiFluorineBridged Bicyclo Compounds HeterocyclicMycosesFluorineBioorganic Chemistry
researchProduct

Novel 2,6-disubstituted phenylboronic compounds - Synthesis, crystal structures, solution behaviour and reactivity

2015

Abstract 2,6-Diformylphenylboronic acid has been synthesized and characterized both in the solid state as well as in solution. In crystal, an unusual structural pattern has been found with the formation of intermolecular hydrogen bonds by B(OH) 2 and CHO groups as well as water molecules. In solution tautomeric equilibrium with the formation of oxaborole ring by one of the formyl groups was proved on the basis of multinuclear NMR spectroscopy. The title compound reacts with secondary mono- and diamines to form various types of substituted benzoxaboroles, which have been characterized by XRD and spectroscopic methods.

crystal structureboronic acidsChemistryHydrogen bondOrganic ChemistryCrystal structureNuclear magnetic resonance spectroscopyRing (chemistry)BiochemistryTautomerreductive aminationtautomeric equilibriaInorganic ChemistryCrystalbenzoxaborolesPolymer chemistryMaterials ChemistryMoleculeReactivity (chemistry)Physical and Theoretical ChemistryJournal of Organometallic Chemistry
researchProduct

Investigation of fungicidal activity of 3-piperazine-bis(benzoxaborole) and its boronic acid analogue

2014

3-Piperazine-bis(benzoxaborole) and its bis(phenylboronic acid) analogue were investigated in terms of their fungicidal activity. The study was carried out against five filamentous fungi: Aspergillus terreus, Fusarium dimerum, Fusarium solani, Penicillium ochrochloron and Aspergillus niger. 3-Piperazine-bis(benzoxaborole) revealed higher inhibitory activity towards the examined strains than standard antibiotic (amphotericin B), whereas bis(phenylboronic acid) proved to be inactive. The study unequivocally showed that the presence of the heterocyclic benzoxaborole system is essential for antifungal action of the examined compounds.

fungicidal activitybenzoxaborolesboronic acidsfungicidesApplied Organometallic Chemistry
researchProduct