Search results for "beta-decay"

showing 10 items of 46 documents

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

2020

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

Nuclear and High Energy PhysicsPenning trapAstronomy & Astrophysics01 natural sciencesIonPhysics Particles & Fieldsbeta-decay spectroscopyIsomersShell model0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment010306 general physicsSpectroscopyCouplingPhysicsScience & TechnologyNUCLEI010308 nuclear & particles physicsPhysicsPRECISION MASS-SPECTROMETRYNuclear shell modelR-PROCESSshell modelpenning trapRAMSEY METHODPenning traplcsh:QC1-999Physics NuclearExcited stateBeta (plasma physics)Physical SciencesSHELL-MODELTRANSITION-PROBABILITIESisomersAtomic physicsBeta-decay spectroscopylcsh:PhysicsIon cyclotron resonancePhysics Letters B
researchProduct

Gamow-Teller strengths in proton-rich exotic nuclei deduced in the combined analysis of mirror transitions

2005

Isospin symmetry is expected for the T-z=+/- 1 -> 0 isobaric analogous transitions in isobars with mass number A, where T-z is the z component of isospin T. Assuming this symmetry, strengths of analogous Gamow-Teller (GT) transitions within A=50 isobars were determined from a high energy-resolution T-z=+1 -> 0, Cr-50(He-3,t)Mn-50 study at 0 degrees in combination with the decay Q value and lifetime from the T-z=-1 -> 0, Fe-50 ->Mn-50 beta decay. This method can be applied to other pf-shell nuclei and can be used to study GT strengths of astrophysical interest.

PhysicsMass numberProtonQ valueRCNPNuclear TheoryGeneral Physics and AstronomySYMMETRY-STRUCTUREBeta decayNuclear physicsHelium-3IsospinDouble beta decayBEAM LINEIsobarAtomic physicsBETA-DECAYWEAKNuclear ExperimentSPECTROMETER GRAND RAIDENPhysical Review Letters
researchProduct

Is the single-state dominance realized in double-β-decay transitions?

1998

In the single-state-dominance hypothesis (SSDH) the decay rate of the two-neutrino double-\ensuremath{\beta} decay to the final ground state is solely determined by virtual single-\ensuremath{\beta}-decay transitions via the ${1}^{+}$ ground state of the intermediate nucleus. A very important consequence the SSDH will be that some of nonaccelerator measurements of double-\ensuremath{\beta}-decay observables could be circumvented by single-\ensuremath{\beta}-decay measurements. To assess the validity of the SSDH, we have carried out a theoretical analysis of all double-\ensuremath{\beta}-decay transitions where the spin-parity of the ground-state of the intermediate nucleus is ${1}^{+}$. The…

PhysicsNuclear and High Energy PhysicsDecay schemeInternal conversionBranching fractionDouble beta decayHigh Energy Physics::ExperimentAlpha decayAtomic physicsNuclear isomerGround stateBeta-decay stable isobarsPhysical Review C
researchProduct

High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32

2010

Nuclear physicsPhysicsNuclear and High Energy PhysicsInternal conversionDecay schemeIsotopes of germaniumDouble beta decayBeta particleAtomic physicsPenning trapMass measurementBeta-decay stable isobarsPhysical Review C
researchProduct

Mass Measurement on the rp-Process Waiting Point 72Kr

2004

The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider26.30.+k 21.10.Dr 27.50.+e 32.10.Bi010308 nuclear & particles physicsHadronrp-process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPnuclei with mass number 59 to 89particle trapsNuclear physicsnuclear massNucleosynthesis0103 physical sciencesNuclear fusionNuclear Physics - Experimentnucleon-nucleus reactions010306 general physicsNuclear Experimentbeta-decayNuclear Physics
researchProduct

High-precision measurement of a low Q value for allowed β−-decay of 131I related to neutrino mass determination

2022

The ground-state-to-ground-state β−-decay 131I (7/2+) → 131Xe (3/2+) Q value was determined with high precision utilizing the double Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The Q value of this β−-decay was found to be Q = 972.25(19) keV through a cyclotron frequency ratio measurement with a relative precision of 1.6 × 10−9. This was realized using the phase-imaging ion-cyclotron-resonance technique. The new Q value is more than 3 times more precise and 2.3σ higher (1.45 keV) than the value extracted from the Atomic Mass Evaluation 2020. Our measurement confirms that the β−-decay to the 9/2+ excited state at 971.22(13) keV in 131Xe is energetically allowed with a Q va…

β− decayNuclear and High Energy PhysicsScience & TechnologyPhysicsPenning trapLow Q valuebeta(-) decayneutriinotAstronomy & AstrophysicsERRORSPhysics Particles & FieldsPhysics NuclearNeutrino massNUCLEAR-DATA SHEETSPhysical SciencesJYFLTRAPBETA-DECAYydinfysiikkaPhysics Letters B
researchProduct

Review of Particle Physics

2020

The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …

high energyleptonmixing [neutrino]High Energy Physics::LatticeCosmic microwave backgrounddiffractionTechnicolorAstrophysicsOmega01 natural sciencesPhysics Particles & Fieldshiggs-boson productionBig Bang nucleosynthesiscosmological model: parameter spacetaudark energyMonte CarlofieldspentaquarkinstrumentationSettore FIS/01gauge bosonAnomalous magnetic dipole momentdeep-inelastic scatteringnew physicsPhysicsDOUBLE-BETA-DECAYElectroweak interactiondensity [dark matter]HEAVY FLAVOURQuarkoniumreview; particle; physicsSUPERSYMMETRIC STANDARD MODELsquare-root-sPhysics Nucleargrand unified theoryboson: heavystatisticsPhysical SciencesHiggs bosonaxion: massflavor: violationNeutrinoELECTROWEAK SYMMETRY-BREAKINGnumerical calculations: Monte Carlophysicson-lineS013EPHQuarkheavy [boson]particle[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Physics Multidisciplinaryanomalous magnetic-momentelectroweak radiative-correctionsdark matter: densityHiggs particlemesonneutrino masses neutrino mixing; neutrino oscillations114 Physical sciencesCHIRAL PERTURBATION-THEORYneutrino mixingStandard Modelquark0202 Atomic Molecular Nuclear Particle And Plasma PhysicsNucleosynthesisquantum chromodynamicsCP: violationDark matterddc:530particle physicsStrong Interactions010306 general physicssparticleS013DFgrand unified theoriesPRODUCTIONGauge bosonScience & Technologyneutrino oscillationsneutrino masses010308 nuclear & particles physicsC50 Other topics in experimental particle physicsParticle Data GroupAstronomy and AstrophysicsDeep inelastic scatteringto-leading-order* Automatic Keywords *heavy bosonaxiontables (particle physics)Tetraquarkproton-proton collisionsSupersymmetryhadronneutrino: mixing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyVolume (compression)HIGGS-BOSONUB-VERTICAL-BARcosmological modeldark energy densityexperimental methodsddc:539.72021Physics beyond the Standard Modelstandard modelgroup theoryGeneral Physics and Astronomytables particle physicshigh energy physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamicsPhysicsenergy: highE Rev 2016[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Settore FIS/01 - Fisica SperimentalephotonSupersymmetryNuclear & Particles Physicsparameter space [cosmological model]dark energy: densityhigh [energy]M013WXfermion-pair productionNuclear and High Energy PhysicsParticle physicsHiggs bosonreviewAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics530dark matterstatistical analysisDouble beta decay0103 physical sciencesconservation lawcold dark-matterTAU LEPTONSAstrophysics::Galaxy AstrophysicstablesDEEP-INELASTIC-SCATTERINGelectroweak interactionHigh Energy Physics::Phenomenology750 GeV diphoton excessPRODUCTION CROSS-SECTIONbaryondensity [dark energy]Physics and AstronomygravitationCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentsupersymmetryMinimal Supersymmetric Standard Model
researchProduct

Decay properties of neutron deficient Kr isotopes

1974

The decay properties of the neutron deficient isotopes73–77Kr and73–76Br have been studied at the ISOLDE facility at CERN. The total decay energiesQ, as determined fromβ + singles orβ + -γ coincidence measurements, are compared with mass formulae.

PhysicsNuclear and High Energy PhysicsDecay schemeIsotopes of germaniumBeta-decay stable isobarsNuclear physicsIsotopes of protactiniumBeta particlePhysics::Accelerator PhysicsIsotopes of zirconiumHigh Energy Physics::ExperimentNeutronAlpha decayNuclear ExperimentZeitschrift für Physik
researchProduct

Physics at a future Neutrino Factory and super-beam facility

2009

The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsPhysics::Instrumentation and DetectorsMUONIUM-ANTIMUONIUM CONVERSIONFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2LONG-BASE-LINE01 natural sciences7. Clean energyWARM DARK-MATTERNuclear physicsLEPTON-FLAVOR VIOLATIONELECTRIC-DIPOLE MOMENTHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ANOMALOUS MAGNETIC-MOMENT010306 general physicsNeutrino oscillationNeutrino physics; Neutrino factoryParticle Physics - PhenomenologyR-PARITY VIOLATIONPhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]LARGE EXTRA DIMENSIONSDOUBLE-BETA-DECAYNeutrino factoryFísicaMU-E CONVERSIONNeutrino physicsHigh Energy Physics - PhenomenologyExperimental High Energy PhysicsLarge extra dimensionCP violationPhysics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino
researchProduct

The limits of the nuclear landscape

2012

In 2011, 100 new nuclides were discovered. They joined the approximately 3,000 stable and radioactive nuclides that either occur naturally on Earth or are synthesized in the laboratory. Every atomic nucleus, characterized by a specific number of protons and neutrons, occupies a spot on the chart of nuclides, which is bounded by 'drip lines' indicating the values of neutron and proton number at which nuclear binding ends. The placement of the neutron drip line for the heavier elements is based on theoretical predictions using extreme extrapolations, and so is uncertain. However, it is not known how uncertain it is or how many protons and neutrons can be bound in a nucleus. Here we estimate t…

PhysicsNuclear reactionMultidisciplinaryIsotopeta114Nuclear TheoryBeta-decay stable isobarsp-processNuclear physicsAtomic nucleusNeutronNuclear drip lineNuclideNuclear ExperimentNature
researchProduct