Search results for "binaries"

showing 10 items of 191 documents

Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

2016

Recent numerical relativity simulations within the Einstein--Maxwell--(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordstr\"om black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of the superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these $\textit{unstable}$ solitons leads…

PhysicsRadiation or classical fieldsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsScalar (mathematics)Time evolutionFOS: Physical sciencesSuperradianceGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesInstabilityEinstein–Maxwell spacetimesGeneral Relativity and Quantum CosmologyBlack holeNumerical relativityGeneral Relativity and Quantum CosmologyNumerical studies of black holes and black-hole binaries0103 physical sciencesSpacetimes with fluidsSoliton010306 general physicsRelativity and gravitationClassical black holesBosonMathematical physics
researchProduct

Study of Two BeppoSAX Observations of GX 340+0

2006

We present the results of two BeppoSAX broad band (0.1–200 keV) observations of the Z-source GX 340+0 comparing our results to those of a previous observation of the source. From the color–color diagram we selected three zones and extracted the source energy spectrum from each zone. We find that the model, composed by a blackbody plus a Comptonized component, absorbed by an equivalent hydrogen column of ~6 × 10 22 cm −2 , well fits the spectra in the energy range below 30 keV. At higher energies a power law component with photon index of 2.5 is observed. The associated flux decreases going from the horizontal branch to the flaring branch of the Z-track.

PhysicsRange (particle radiation)PhotonHydrogenAstrophysics::High Energy Astrophysical PhenomenaFluxAstronomychemistry.chemical_elementAstronomy and Astrophysicsstars : individual (GX 340+0)AstrophysicsHorizontal branchindividual (GX 340+0); X-rays : binaries; X-rays : general [stars]Power lawSpectral linechemistrySpace and Planetary ScienceBlack-body radiationX-rays : binarieX-rays : generalChinese Journal of Astronomy and Astrophysics
researchProduct

BeppoSAX serendipitous discovery of the X-ray pulsar SAX J1802.7-2017

2003

We report on the serendipitous discovery of a new X-ray source, SAX J1802.7-2017, ~22' away from the bright X-ray source GX 9+1, during a BeppoSAX observation of the latter source on 2001 September 16-20. SAX J1802.7-2017 remained undetected in the first 50 ks of observation; the source count rate in the following ~300 ks ranged between 0.04 c/s and 0.28 c/s, corresponding to an averaged 0.1-10 keV flux of 3.6 10^{-11} ergs cm^{-2} s^{-1}. We performed a timing analysis and found that SAX J1802.7-2017 has a pulse period of 139.612 s, a projected semimajor axis of a_x sin i ~ 70 lt-s, an orbital period of ~4.6 days, and a mass function f(M) ~ 17 Msun. The new source is thus an accreting X-ra…

PhysicsSemi-major axisAstrophysics (astro-ph)FluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsOrbital periodPulse periodSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceHigh massStars: Pulsars: General Stars: Pulsars: Individual: Alphanumeric: SAX J1802.7-2017 Stars: Magnetic Fields Stars: Neutron X-Rays: BinariesX-ray pulsar
researchProduct

The complex enviroment around Cir X-1

2008

We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X–1 during the phase passage 0.223-0.261, based on the phase zero passage at the periastron, of its orbital period. We focus on the study of detected emission and absorption features using the High Energy Transmission Grating Spectrometer on board of the Chandra satellite. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low countrate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity, when the unabsorbed source luminosity is about three times the value in the hard …

PhysicsSettore FIS/05 - Astronomia E AstrofisicaSpectrometerAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)X-ray Accretion and accretion disks Neutron stars X-ray binariesFluxAstrophysicsEmission spectrumAbsorption (electromagnetic radiation)Orbital periodSpectral lineLuminosity
researchProduct

The different fates of a low-mass X-ray binary - I. Conservative mass transfer

2003

We study the evolution of a low mass x-ray binary coupling a binary stellar evolution code with a general relativistic code that describes the behavior of the neutron star. We assume the neutron star to be low--magnetized (B~10^8 G). In the systems investigated in this paper, our computations show that during the binary evolution the companion transfers as much as 1 solar mass to the neutron star, with an accretion rate of 10^-9 solar masses/yr. This is sufficient to keep the inner rim of the accretion disc in contact with the neutron star surface, thus preventing the onset of a propeller phase capable of ejecting a significant fraction of the matter transferred by the companion. We find th…

PhysicsSolar massGravitational waveAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsAccretion (astrophysics)Black holeNeutron starrelativity binaries: close stars: neutron pulsars: general X-rays: binariesPulsarSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsStellar evolutionAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

A Broad Iron Line in the Chandra High Energy Transmission Grating Spectrum of 4U 1705-44

2005

We present the results of a Chandra 30 ks observation of the low-mass X-ray binary and atoll source 4U 1705-44. Here we concentrate on the study of discrete features in the energy spectrum at energies below ~3 keV, as well as on the iron Kalpha line, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. Below 3 keV, three narrow emission lines are found at 1.47, 2.0, and 2.6 keV. The 1.47 and 2.6 keV lines are probably identified with Lyalpha emission from Mg XII and S XVI, respectively. The identification of the feature at ~2.0 keV is uncertain because of the presence of an instrumental feature at the same energy. The iron Kalpha line at ~6.5 keV is found …

PhysicsSpectrometerAstrophysics::High Energy Astrophysical PhenomenaX-rays : starsAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsaccretion accretion diskstars : individual (4U 1705-44)Coronastars : neutronNeutron starFull width at half maximumSpace and Planetary Scienceindividual (4U 1705-44); stars : neutron; X-rays : binaries; X-rays : general; X-rays : stars [accretion accretion disks; stars]Reflection (physics)Emission spectrumLow MassX-rays : binarieLine (formation)X-rays : general
researchProduct

A Preliminary Analysis of a New Chandra Observation (ObsID 6148) of Cir X-1

2008

We present the preliminary spectral analysis of a 25 ks long Chandra observation of the peculiar source Cir X–1 near the periastron passage. We estimate more precise coordinates of the source compatible with the optical and radio counterpart coordinates. We detect emission lines associated to Mg XII, Si XIII, Si XIV, S XV, S XVI Ar XVII, Ar XVIII, Ca XIX, Ca XX, Fe XXV, Fe XXVI showing a redshift of 470 km s−1. The more intense emission features at 6.6 keV show a double‐peaked shape that can be modelled with two or three Gaussian lines.

PhysicsX-ray binaries Accretion and accretion disks Neutron stars Distances redshifts radial velocities; spatial distribution of galaxies Black holesX-ray binaries Accretion and accretion disks Neutron stars Distances redshifts radial velocitieGaussianX-ray binaryAstronomyAstrophysicsRedshiftPreliminary analysisRed shiftNeutron starsymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicasymbolsSpectral analysisEmission spectrumspatial distribution of galaxies Black holes
researchProduct

A method to constrain the neutron star magnetic field in Low Mass X-ray Binaries

2005

We describe here a method to put an upper limit to the strength of the magnetic field of neutron stars in low mass X‐ray binaries for which the spin period and the X‐ray luminosity during X‐ray quiescent periods are known. This is obtained using simple considerations about the position of the magnetospheric radius during quiescent periods. We applied this method to the accreting millisecond pulsar SAX J1808.4‐3658, which shows coherent X‐ray pulsations at a frequency of ∼ 400 Hz and a quiescent X‐ray luminosity of ∼ 5 × 1031 ergs/s, and found that B ⩽ 5 × 108 Gauss in this source. Combined with the lower limit inferred from the presence of X‐ray pulsations, this constrains the SAX J1808.4‐3…

PhysicsX-ray: binarieAstrophysics::High Energy Astrophysical PhenomenaStars: individual: SAX J1808.4-3658 KS 1731-260 Aql X-1X-ray: generalX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRadiusindividual: SAX J1808.4-3658 KS 1731-260 Aql X-1; Stars: neutron stars; X-ray: binaries; X-ray: general; X-ray: stars [Accretion discs; Stars]LuminosityMagnetic fieldStars: neutron starNeutron starPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsX-ray: starsAccretion discLow MassAstrophysics::Galaxy Astrophysics
researchProduct

High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545

2005

In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral componen…

PhysicsX-rays : binariesScatteringAstrophysics::High Energy Astrophysical Phenomenapulsars : individual : SAX J2103.5+4545Astrophysics (astro-ph)Phase (waves)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiationAstrophysicsSpectral linePulse (physics)Full width at half maximumPulsarbinaries : closeSpace and Planetary Scienceclose; pulsars : individual : SAX J2103.5+4545; X-rays : binaries [binaries]X-ray pulsar
researchProduct

X-Ray Eclipse Time Delays in 4U2129+47

2007

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

Physicsaccretion disksAstrophysics (astro-ph)Binary numberbinaries: eclipsingFOS: Physical sciencesAstronomy and AstrophysicsX-rays: starsAstrophysicsAstrophysicsLight curveOrbital periodCoronastars: individual: 4U 2129+47stars: neutronaccretionSpace and Planetary ScienceOrbital motionModulation (music)Center of massEclipse
researchProduct