Search results for "binding sites"

showing 10 items of 636 documents

Enzymatic effects on reactant and transition states. The case of chalcone isomerase.

2007

Chalcone isomerase catalyzes the transformation of chalcone to naringerin as a part of flavonoid biosynthetic pathways. The global reaction takes place through a conformational change of the substrate followed by chemical reaction, being thus an excellent example to analyze current theories about enzyme catalysis. We here present a detailed theoretical study of the enzymatic action on the conformational pre-equilibria and on the chemical steps for two different substrates of this enzyme. Free-energy profiles are obtained in terms of potentials of mean force using hybrid quantum mechanics/molecular mechanics potentials. The role of the enzyme becomes clear when compared to the counterpart eq…

Chalcone isomeraseChalconeStereochemistryProtein ConformationCrystallography X-RayBiochemistryChemical reactionCatalysisEnzyme catalysischemistry.chemical_compoundColloid and Surface ChemistryChalconeChalconesComputational chemistryTransition state analogIntramolecular LyasesBinding SitesbiologyChemistrySubstrate (chemistry)Active siteStereoisomerismGeneral ChemistryTransition stateKineticsbiology.proteinJournal of the American Chemical Society
researchProduct

Albumin binding and hydrophobic character of promazine and chlorpromazine metabolites.

1972

1. The binding of didesmethylpromazine, promazine N-oxide, 2-hydroxypromazine, promazine sulfoxide, monodesmethylpromazine sulfoxide, didesmethylchlorpromazine, chlorpromazine N-oxide, and chlorpromazine sulfoxide to bovine serum albumin was determined by means of sephadex gel filtration. 2. The albumin binding of these substances was characterized by the following parameters: the percentage α of free substance, the percentage β of bound substance, the binding constants K1, k+ and m, the number of binding sites per albumin molecule, and the free binding energy ΔFo. 3. The partition coefficients between n-octanol and buffer solution, pH 7.40, were measured for the above mentioned metabolites…

Chemical PhenomenaChlorpromazineStatistics as TopicPlasma protein bindingchemistry.chemical_compoundmedicineAnimalsBovine serum albuminChlorpromazinePromazinePromazinePharmacologyChromatographyBinding SitesbiologyAlbuminSulfoxideSerum Albumin BovineGeneral MedicineBuffer solutionChemistrychemistrySolubilitySephadexSulfoxidesbiology.proteinChromatography GelCattleNitrogen OxidesChlorinemedicine.drugProtein BindingNaunyn-Schmiedeberg's archives of pharmacology
researchProduct

Alteration of a Cry1A Shared Binding Site in a Cry1Ab-Selected Colony of Ostrinia furnacalis

2022

The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays wi…

ChinaBinding SitesBacillus thuringiensis ToxinsCry1 toxinsHealth Toxicology and Mutagenesisfungibinding site modelBacillus thuringiensisRfood and beveragespyramid strategyMothsAsian corn borer; <i>Bacillus thuringiensis</i>; Cry1 toxins; binding site model; pyramid strategyToxicologyAsian corn borerZea maysArticleInsecticide ResistanceLarva<i>Bacillus thuringiensis</i>AnimalsMedicinePest Control BiologicalToxins
researchProduct

Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex.

2002

The major light-harvesting complex (LHCIIb) of photosystem II can be reconstituted in vitro from its recombinant apoprotein in the presence of a mixture of carotenoids and chlorophylls a and b. By varying the chlorophyll a/b ratio in the reconstitution mixture, the relative amounts of chlorophyll a and chlorophyll b bound to LHCIIb can be changed. We have analyzed the chlorophyll stoichiometry in recombinant wild type and mutant LHCIIb reconstituted at different chlorophyll a/b ratios in order to assess relative affinities of the chlorophyll-binding sites. This approach reveals five sites that exclusively bind chlorophyll b. Another site exhibits a slight preference of chlorophyll b over ch…

Chlorophyll bChlorophyllChlorophyll aPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyBiochemistrychemistry.chemical_compoundChlorophyll bindingBinding siteMolecular BiologyCarotenoidchemistry.chemical_classificationBinding SitesPeasPhotosystem II Protein ComplexCell BiologyRecombinant ProteinsB vitaminsKineticsBiochemistrychemistryAmino Acid SubstitutionChlorophyllMutagenesis Site-DirectedThe Journal of biological chemistry
researchProduct

Chlorophyll b is involved in long-wavelength spectral properties of light-harvesting complexes LHC I and LHC II.

2001

AbstractChlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species…

Chlorophyll bChlorophyllPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesPhotosystem IPhotochemistryBiochemistryAbsorptionLight-harvesting complexReconstitutionchemistry.chemical_compoundSolanum lycopersicumStructural BiologySpinacia oleraceaGeneticsChlorophyll bindingCentrifugation Density GradientMolecular BiologyChlorophyll fluorescenceLong-wavelength chlorophyllBinding SitesPhotosystem I Protein ComplexChemistryChlorophyll ATemperaturePhotosystem II Protein ComplexLight-harvesting complexes of green plantsCell BiologyPigments BiologicalPlant LeavesSpectrometry FluorescenceLight-harvesting complexChlorophyll fluorescenceChlorophyll bindingProtein BindingFEBS letters
researchProduct

Pigment binding of photosystem I light-harvesting proteins.

2002

Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in t…

ChlorophyllChlorophyll aPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyXanthophyllsPhotosystem IBiochemistrychemistry.chemical_compoundPigmentSolanum lycopersicumMolecular BiologyP700Binding SitesPhotosystem I Protein ComplexChlorophyll Afood and beveragesPhotosystem II Protein ComplexCell BiologyPigments Biologicalbeta CarotenePlant LeavesSpectrometry FluorescencechemistryBiochemistryChlorophyllvisual_artvisual_art.visual_art_mediumViolaxanthinThe Journal of biological chemistry
researchProduct

Exchange of Pigment-Binding Amino Acids in Light-Harvesting Chlorophyll a/b Protein

1999

Four amino acids in the major light-harvesting chlorophyll (Chl) a/b complex (LHCII) that are thought to coordinate Chl molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kühlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chl molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments, although the thermal stability of the resulting mut…

ChlorophyllChloroplastsMacromolecular SubstancesStereochemistryMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesTrimerBiochemistrychemistry.chemical_compoundAmino Acid SequenceAmino AcidsPeptide sequencePlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll APeasPhotosystem II Protein Complexfood and beveragesAmino acidChloroplastB vitaminsAmino Acid SubstitutionchemistryChlorophyllThylakoidMutagenesis Site-DirectedCarrier ProteinsBiochemistry
researchProduct

Carotenoid binding sites in LHCIIb

2000

The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30–50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly …

ChlorophyllLuteinPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesXanthophyllsBiologyBinding CompetitiveBiochemistrySubstrate SpecificityLight-harvesting complexchemistry.chemical_compoundNeoxanthinZeaxanthinsTrypsinProtein PrecursorsCarotenoidPlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll ALuteinPhotosystem II Protein Complexfood and beveragesPigments BiologicalPlantsbeta CaroteneCarotenoidseye diseasesZeaxanthinEnergy TransferchemistryBiochemistryXanthophyllElectrophoresis Polyacrylamide GelApoproteinsViolaxanthinEuropean Journal of Biochemistry
researchProduct

De-epoxidation of Violaxanthin in Light-harvesting Complex I Proteins

2004

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx wa…

ChlorophyllLuteinPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesXanthophyllsPhotosystem IThylakoidsBiochemistrychemistry.chemical_compoundSolanum lycopersicumSpinacia oleraceaEscherichia coliMolecular BiologyPhotosystemchemistry.chemical_classificationBinding SitesPhotosystem I Protein ComplexChemistryfood and beveragesPigments BiologicalCell Biologybeta CaroteneRecombinant ProteinsChloroplastKineticsBiochemistryXanthophyllThylakoidEpoxy CompoundsApoproteinsViolaxanthinJournal of Biological Chemistry
researchProduct

Evaluation of enantioselective binding of antihistamines to human serum albumin by ACE.

2007

The drug binding to plasma and tissue proteins is a fundamental factor in determining the overall pharmacological activity of a drug. HSA, together with alpha(1)-acid glycoprotein, are the most important plasma proteins, which act as drug carriers, with implications on the pharmacokinetic of drugs. Among plasma proteins, HSA possesses the highest enantioselectivity. In this paper, a new methodology for the study of enantiodifferentiation of chiral drugs with HSA is developed and applied to evaluate the possible enantioselective binding of four antihistamines: brompheniramine, chlorpheniramine, hydroxyzine and orphenadrine to HSA. This study includes the determination of affinity constants o…

ChlorpheniramineClinical BiochemistryPlasma protein bindingPharmacologyBiochemistryAnalytical ChemistryPharmacokineticsOrphenadrinemedicineOrphenadrineHumansSerum AlbuminDrug CarriersChromatographyBinding SitesChemistryBiological activityStereoisomerismBrompheniramineHuman serum albuminBrompheniraminebody regionsHydroxyzineembryonic structuresHistamine H1 AntagonistsEnantiomerDrug carriermedicine.drugProtein BindingElectrophoresis
researchProduct