Search results for "biomaterial"

showing 10 items of 1350 documents

The application protocol impacts the effectiveness of biocides against lichens

2020

Abstract This work analyzed the influence of different application protocols on the efficacy of two biocides against the foliose lichen Xanthoparmelia tinctina on the sandstones of the Roman Archaeological site of Luni (Italy). The hypotheses that (a) biocide application tools (brush vs. poultice), (b) pre-treatment hydration, and (c) post-treatment washing may affect devitalization success were verified by monitoring chlorophyll a fluorescence of thalli, both in situ and in laboratory conditions. The hypothesis that (d) stone substrate may act as reservoir for later biocide release under repeated cycles of wetting and drying was also assayed. Analyses confirmed the importance of the applic…

0301 basic medicineBiocide030106 microbiologyFoliose lichenLichenBenzalkonium chloride010501 environmental sciences01 natural sciencesMicrobiologyBiomaterials03 medical and health sciencesBenzalkonium chloridechemistry.chemical_compoundAdsorptionChlorophyll a fluorescencemedicineCelluloseThallus hydrationLichenWaste Management and DisposalBenzalkonium chloride Chlorophyll a fluorescence Lichen Thallus hydration Stone conservation0105 earth and related environmental sciencesChemistryBenzalkonium chloride; Chlorophyll a fluorescence; Lichen; Stone conservation; Thallus hydrationPoulticeThallusEnvironmental chemistryStone conservationmedicine.drugInternational Biodeterioration & Biodegradation
researchProduct

Species- and site-specific efficacy of commercial biocides and application solvents against lichens

2017

Abstract Control of lichens on stone cultural heritage is mostly achieved by a combination of mechanical removal with biocide applications. However, there is a lack of scientific evidence on the efficacy of different biocides on different species, and on the consistency of biocide effects on heritage sites in different environmental conditions. This results in some uncertainty when conservation interventions to control lichens are routinely defined on the basis of restoration tradition or empirical evaluation, without experimental measures of how lichens respond. In this work, we quantitatively evaluated (a) the efficacy of five commercially-available biocides, applied using a brush or with…

0301 basic medicineBiocideBiocide; Chlorophyll a fluorescence; Ergosterol; Lichen; Organic solvents; Microbiology; Biomaterials; Waste Management and DisposalBiocide030106 microbiologyLichenVerrucaria nigrescens010501 environmental sciencesBiologyVitalityProtoparmeliopsis muralis01 natural sciencesMicrobiologyBiomaterials03 medical and health sciencesErgosterolChlorophyll a fluorescenceBotanyLichenWaste Management and Disposal0105 earth and related environmental sciencesBiocide Chlorophyll fluorescence Ergosterol Lichen Organic solventsPoulticeOrganic solventsEnvironmental chemistryChlorophyll fluorescenceBiocide Chlorophyll a fluorescence Ergosterol Lichen Organic solventsInternational Biodeterioration & Biodegradation
researchProduct

In Vitro Biocompatibility Evaluation of Nine Dermal Fillers on L929 Cell Line

2020

Objective. Biomaterial research for soft tissue augmentation is an increasing topic in aesthetic medicine. Hyaluronic acid (HA) fillers are widely used for their low invasiveness and easy application to correct aesthetic defects or traumatic injuries. Some complications as acute or chronic inflammation can occur in patients following the injection. Biocompatibility assays are required for medical devices intended for human use, in order to prevent damages or injuries in the host. In this study, nine HA fillers were tested in order to evaluate their cytotoxicity and their effects on L929 cell line, according to the UNI EN ISO 10993 regulation. Methods. Extracts were prepared from nine HA fil…

0301 basic medicineBiocompatibilityArticle SubjectCell SurvivalBiocompatible Materials02 engineering and technologyCosmetic TechniquesPharmacologyengineering.materialDermal FillersGeneral Biochemistry Genetics and Molecular BiologyCell Line03 medical and health scienceschemistry.chemical_compoundMiceIn vivoFiller (materials)Dermal FillersHyaluronic acidMaterials TestingMedicineAnimalsViability assayCytotoxicityGeneral Immunology and Microbiologybusiness.industryRBiomaterialGeneral Medicine021001 nanoscience & nanotechnology030104 developmental biologychemistryengineeringMedicine0210 nano-technologybusinessResearch ArticleBioMed Research International
researchProduct

Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles

2016

Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes…

0301 basic medicineBiodistributionMyeloidPolymersCellBiophysicsMice NudeCapsulesBioengineeringSpleen02 engineering and technologyFlow cytometryBiomaterialsMice03 medical and health sciencesNanocapsulesIn vivoMaterials TestingmedicineAnimalsMyeloid CellsTissue DistributionMolecular Targeted TherapyMicrobubblesmedicine.diagnostic_testbusiness.industryMacrophages021001 nanoscience & nanotechnology3. Good healthCell biologyVisceraNanomedicine030104 developmental biologymedicine.anatomical_structureOrgan SpecificityMechanics of Materials2023 OA procedureLiposomesImmunologyDrug deliveryCeramics and CompositesMicrobubblesTargeted delivery0210 nano-technologybusinessBiomaterials
researchProduct

Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution.

2016

9 pages; International audience; Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches. Such approaches have made possible…

0301 basic medicineBiomineralizationProteomicsComputational biologyBiologyProteomicsSkeletal tissueCalcium Carbonatebiomineralization ; metazoan ; calcification ; skeleton ; skeletal matrix ; proteomicsCalcificationEvolution Molecular03 medical and health scienceschemistry.chemical_compoundMatrix (mathematics)Calcification PhysiologicMetazoanStructural Biology[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsSkeleton[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsRapid identificationSkeletal matrix030104 developmental biologyCalcium carbonatechemistryBiochemistryBiomineralization
researchProduct

A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus…

2016

12 pages; International audience; The sea urchin endoskeleton consists of a magnesium-rich biocalcite comprising a small amount of occluded organic macromolecules. This structure constitutes a key-model for understanding the mineral - organics interplay, and for conceiving in vitro bio-inspired materials with tailored properties. Here we employed a deep-clean technique to purify the occluded proteins from adult Paracentrotus lividus tests. We characterized them by 1- and 2D-electrophoreses, ELISA and immunoblotting, and using liquid chromatography coupled with Mass Spectrometry (nanoLC-MS/MS), we identified two metalloenzymes (carbonic anhydrase and MMP), a set of MSP130 family members, sev…

0301 basic medicineBiomineralizationProteomicsSea urchinBiophysicsMatrix (biology)ProteomicsBiochemistryMineralization (biology)Paracentrotus lividusMass Spectrometry03 medical and health sciences0302 clinical medicinebiology.animal[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Animals[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsSea urchinExtracellular Matrix ProteinsCarbonic anhydrasebiologyChemistryCalcitebiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsIn vitroExtracellular MatrixCalcifying matrixC-type lectin030104 developmental biologyBiochemistry[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Paracentrotus030217 neurology & neurosurgeryMacromoleculeBiomineralization
researchProduct

Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors

2017

Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…

0301 basic medicineBiophysicsPharmaceutical ScienceConnective tissueBioengineeringBreast Neoplasmsquantum dotsMice SCIDFlow cytometryBiomaterialsCell therapy03 medical and health sciencesIn vivoCell MovementInternational Journal of NanomedicineCell Line TumorDrug DiscoverymedicineAnimalsHumansViability assayParticle SizeCytotoxicityCell ShapeSkinOriginal Researchmesenchymal stem cellsMigration Assaymedicine.diagnostic_testCell DeathChemistryOrganic ChemistryMesenchymal stem cellGeneral MedicineDynamic Light ScatteringEndocytosis030104 developmental biologymedicine.anatomical_structureimmunodeficient miceCancer researchNanoparticlesFemaletumor tropismtumor-specific deliveryInternational Journal of Nanomedicine
researchProduct

Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ

2018

Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The r…

0301 basic medicineBone Regenerationlong bone defects; bone marrow cells; inorganic polyphosphate; microparticles; bisphosphonates; <i>Runx2</i>; <i>Sox9</i>; cathepsin-K; tumor metastases; human mesenchymal stem cellsmedicine.medical_treatmentBiocompatible MaterialsCore Binding Factor Alpha 1 SubunitZoledronic Acidlcsh:ChemistryMiceRunx2OsteogenesisPolyphosphatesFemurlcsh:QH301-705.5tumor metastasesSpectroscopymicroparticlescathepsin-KDiphosphonatesTissue ScaffoldsChemistryImidazolesBiomaterialSOX9 Transcription FactorGeneral MedicineUp-RegulationComputer Science ApplicationsCell biologyRUNX2medicine.anatomical_structureinorganic polyphosphateChondrogenesisSox9medicine.drugArticleCatalysisChondrocyteInorganic Chemistryhuman mesenchymal stem cells03 medical and health sciencesOsteoclastmedicineAnimalsHumansPhysical and Theoretical Chemistrybone marrow cellsbisphosphonatesMolecular BiologyOrganic ChemistryMesenchymal stem cellMesenchymal Stem CellsBisphosphonateRatslong bone defects030104 developmental biologyZoledronic acidlcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationNanoparticlesBone marrowInternational Journal of Molecular Sciences
researchProduct

Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts

2018

The combination of the two techniques of rapid prototyping 3D-plotting and bioactive surface functionalization is presented, with emphasis on the in vitro effect of Bone Sialoprotein (BSP) on primary human osteoblasts (hOBs). Our primary objective was to demonstrate the BSP influence on the expression of distinctive osteoblast markers in hOBs. Secondary objectives included examinations of the scaffolds' surface and the stability of BSP-coating as well as investigations of cell viability and proliferation. 3D-plotted calcium phosphate cement (CPC) scaffolds were coated with BSP via physisorption. hOBs were seeded on the coated scaffolds, followed by cell viability measurements, gene expressi…

0301 basic medicineBone sialoproteinMaterials scienceCellBiomedical Engineeringchemistry.chemical_element02 engineering and technologyCalciumCell morphologyBiomaterials03 medical and health sciencesfluids and secretionsstomatognathic systemIn vivomedicineViability assaybiologyOsteoblast021001 nanoscience & nanotechnologyCell biology030104 developmental biologymedicine.anatomical_structurechemistrybiology.proteinSurface modification0210 nano-technologyJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

Microenvironments to study migration and somal translocation in cortical neurons

2018

Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spr…

0301 basic medicineCORTICAL NEURONSGrowth ConesBiophysicsCEREBRAL CORTEXBioengineeringINGENIERÍAS Y TECNOLOGÍASBiologySOMAL TRANSLOCATIONMicrotubulesBiotecnología IndustrialBiomaterials03 medical and health sciences0302 clinical medicineMicrotubuleCell MovementmedicineSomal translocationCell AdhesionAnimalsCell adhesionGrowth coneCerebral CortexNeuronsBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Cortical neuronsActin cytoskeletonMice Inbred C57BLCORTICOGENESISCorticogenesisActin Cytoskeleton030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentNEURONAL MIGRATIONMechanics of MaterialsCerebral cortexCeramics and CompositesNeuroscience030217 neurology & neurosurgery
researchProduct