Search results for "biophysic"

showing 10 items of 3565 documents

Structure and Stability of Hsp60 and Groel in Solution

2016

Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …

0301 basic medicineCircular dichroismSmall-angle X-ray scatteringBiophysicsGroELDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundCrystallographyMolecular dynamics030104 developmental biologyMonomerchemistryBiophysicsMoleculeHSP60Biophysical Journal
researchProduct

Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxy…

2019

Abstract Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problem…

0301 basic medicineClinical BiochemistryBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCysteineMolecular Biologychemistry.chemical_classificationMethionineSelenocysteinebiologyWaterGlutathionebiology.organism_classificationAdaptation PhysiologicalGlutathioneAmino acidOxygen030104 developmental biologychemistryGenetic CodeBiophysicsEnergy source030217 neurology & neurosurgeryCysteineArchaeaHydrothermal ventBiological Chemistry
researchProduct

Electroporation by concentric-type needle electrodes and arrays.

2017

Abstract The efficacy of genomic medicine depends on gene transfer efficiency. In this area, electroporation has been found to be a highly promising method for physical gene transfer. However, electroporation raises issues related to electrical safety, tissue damage, and the number of required wounds. Concentric-type needle electrodes seek to address these issues by using a lower bias (10 V), a single wound, fewer processing steps, and a smaller working area (≈ 10 mm 3 ), thus offering greater accuracy and precision. Moreover, the needle can be arrayed to simultaneously treat several target regions. This paper proposes a novel method using concentric-type needle electrodes to improve the ef…

0301 basic medicineComputer scienceBiophysicsGene transferGene deliveryConcentric03 medical and health sciencesMice0302 clinical medicineTissue damageElectrochemistryGenomic medicineAnimalsPhysical and Theoretical ChemistryElectrodesZebrafishbusiness.industryElectroporationGene Transfer TechniquesGeneral MedicineBiotechnology030104 developmental biologyElectroporationNeedles030220 oncology & carcinogenesisElectrodebusinessBiomedical engineeringBioelectrochemistry (Amsterdam, Netherlands)
researchProduct

Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: Modeling and simulation approaches

2020

International audience; The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of k…

0301 basic medicineComputer sciencedrug designIn silicoPneumonia Viralmembrane fusioncoronavirusReviewsDrug designComputational biologyMolecular Dynamics SimulationViral Nonstructural Proteinsmedicine.disease_causespike proteinAntiviral AgentsMolecular Docking SimulationBiochemistry[SPI.AUTO]Engineering Sciences [physics]/AutomaticModeling and simulationBetacoronavirus03 medical and health sciencesPandemicmedicineHumansstructural biophysicsPandemicsCoronavirus030102 biochemistry & molecular biologySARS-CoV-2free-energy methodsmolecular modelingRational designCOVID-19General ChemistryVirus InternalizationSARS unique domainmolecular dynamics3. Good healthMolecular Docking Simulation030104 developmental biologyDocking (molecular)Settore CHIM/03 - Chimica Generale E InorganicaSpike Glycoprotein CoronavirusdockingproteasesCoronavirus Infections
researchProduct

Yeast trehalases: Two enzymes, one catalytic mission

2016

Abstract Background Trehalose is a non-reducing disaccharide highly conserved throughout evolution. In yeasts, trehalose hydrolysis is confined to the enzyme trehalase, an α-glucosidase specific for trehalose as sole substrate. Two kinds of trehalase activity exist in yeasts: neutral and acid enzymes. Scope of the review This review makes a comparative survey of the main biochemical and genetic parameters, regulatory systems, tridimensional structure and catalytic mechanism of the two yeast trehalases. Major conclusions The yeast neutral and acid trehalases display sharp differences in biochemical features (optimum pH, Mr or amino acid sequence) physiological roles, subcellular location (cy…

0301 basic medicineCytoplasm030106 microbiologyBiophysicsCatabolite repressionTrehalase activitySaccharomyces cerevisiaeBiologyBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundCell WallTrehalaseTrehalaseMolecular BiologyPeptide sequencechemistry.chemical_classificationHydrolysisTrehaloseTrehaloseYeastCytosol030104 developmental biologyEnzymechemistryBiochemistryBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase

2020

Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…

0301 basic medicineCytoplasmGpA glycophorin AC4DC C4-dicarboxylateCL cross-linkingpiston-typeMBP maltose-binding proteinBiochemistry03 medical and health sciencesProtein DomainsDcuSEscherichia coli(Gly)xxx(Gly) motifMolecular Biologysensor kinasefumarate030102 biochemistry & molecular biologyChemistryEscherichia coli ProteinsCell MembraneHistidine kinaseGene Expression Regulation BacterialCell BiologyPeriplasmic spacelinkerTransmembrane proteinoxidative Cys cross-linkingTransmembrane domain030104 developmental biologyMembrane proteinProtein kinase domainHelixBiophysicsProtein MultimerizationProtein Kinasestransmembrane signalingLinkerResearch ArticleTM transmembraneJournal of Biological Chemistry
researchProduct

Differential staining of peripheral nuclear chromatin with Acridine orange implies an A-form epichromatin conformation of the DNA

2018

ABSTRACT The chromatin observed by conventional electron microscopy under the nuclear envelope constitutes a single layer of dense 30–35 nm granules, while ∼30 nm fibrils laterally attached to them, form large patches of lamin-associated domains (LADs). This particular surface “epichromatin” can be discerned by specific (H2A+H2B+DNA) conformational antibody at the inner nuclear envelope and around mitotic chromosomes. In order to differentiate the DNA conformation of the peripheral chromatin we applied an Acridine orange (AO) DNA structural test involving RNAse treatment and the addition of AO after acid pre-treatment. MCF-7 cells treated in this way revealed yellow/red patches of LADs atta…

0301 basic medicineDNA A-formRNase P03 medical and health scienceschemistry.chemical_compoundHumansLADsNADsMitosisOriginal ResearchStaining and LabelingDifferential stainingMetachromasiaAcridine orangeDNACell BiologyepichromatinAcridine OrangeChromatinnucleosome superbeadsChromatinStainingDNA structural test030104 developmental biologychemistryMCF-7 CellsBiophysicsNucleic Acid ConformationDNANucleus
researchProduct

Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in met…

2020

Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…

0301 basic medicineDNA damageClinical BiochemistryBone NeoplasmsNitric Oxide Synthase Type INitric OxideBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePeroxynitrous AcidHumansMTT assayViability assaylcsh:QH301-705.5Reactive nitrogen speciesSettore CHIM/02 - Chimica FisicaOsteosarcomalcsh:R5-920Settore BIO/16 - Anatomia UmanaOrganic ChemistryDNAReactive Nitrogen Species2-MethoxyestradiolPeroxynitrous acid030104 developmental biologychemistrylcsh:Biology (General)Settore CHIM/03 - Chimica Generale E InorganicaCancer cellBiophysicslcsh:Medicine (General)030217 neurology & neurosurgeryPeroxynitrite2 methoxyestradiol nitric oxide chemotherapyResearch PaperRedox Biology
researchProduct

Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

2017

We present a dynamic coarse-graining technique that allows to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSM), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling we additionally perform steered molecular dynamics simulations and find excellen…

0301 basic medicineDiscretizationGeneral Physics and AstronomyMarkov processFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciences03 medical and health sciencesMolecular dynamicssymbols.namesake0103 physical sciencesPhysics - Biological PhysicsStatistical physicsPhysical and Theoretical Chemistry010306 general physicsPhysicsQuantitative Biology::BiomoleculesMarkov chainMolecular biophysicsBiomolecules (q-bio.BM)Function (mathematics)030104 developmental biologyQuantitative Biology - BiomoleculesOrders of magnitude (time)Biological Physics (physics.bio-ph)FOS: Biological sciencessymbolsSoft Condensed Matter (cond-mat.soft)Granularity
researchProduct

A Novel Open and Infectious Form of Echovirus 1.

2016

ABSTRACT One of the hallmarks of enterovirus genome delivery is the formation of an uncoating intermediate particle. Based on previous studies of mostly heated picornavirus particles, intermediate particles were shown to have externalized the innermost capsid protein (VP4) and exposed the N terminus of VP1 and to have reduced infectivity. Here, in addition to the native and intact particle type, we have identified another type of infectious echovirus 1 (E1) particle population during infection. Our results show that E1 is slightly altered during entry, which leads to the broadening of the major virion peak in the sucrose gradient. In contrast, CsCl gradient separation revealed that in addit…

0301 basic medicineEchovirusPicornavirusvirusesImmunologyPopulationmedicine.disease_causeMicrobiology03 medical and health sciencesVirologymedicineEnterovirus InfectionsHumansgenome deliveryeducationInfectivityeducation.field_of_studybiologyVirionRNAbiology.organism_classificationVirologyEnterovirus B HumanVirus-Cell Interactionsenterovirukset030104 developmental biologyCapsidInsect Scienceintermediate particlesBiophysicsParticleRNA ViralCapsid ProteinsEchovirus 1Binding domainJournal of virology
researchProduct