Search results for "biophysics"
showing 10 items of 3515 documents
Protein-Free Hapten-Carbon Nanotube Constructs Induce the Secondary Immune Response
2017
Carbon nanotubes are novel technological tools with multiple applications. The interaction between such nanoparticles and living organisms is nowadays a matter of keen research by academic and private institutions. In this study, carbon nanotube constructs were investigated as delivery vehicles for immunostimulation and induction of the secondary immune response to a small organic molecule, namely, a hapten. Two types of nanoconstructs were prepared: on one hand, carbon nanotubes carrying a protein bioconjugate of a hapten covalently linked to the carbon surface, and on the other hand, covalent carbon nanotube constructs of the same model chemical compound without the carrier protein. Nanot…
Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases
2016
The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neu…
TOX3 regulates neural progenitor identity
2016
The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…
Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication.
2020
Synaptic transmission and plasticity are shaped by the dynamic reorganization of signaling molecules within pre- and postsynaptic compartments. The nanoscale organization of key effector molecules has been revealed by single-particle trajectory (SPT) methods. Interestingly, this nanoscale organization is highly heterogeneous. For example, presynaptic voltage-gated calcium channels (VGCCs) and postsynaptic ligand-gated ion channels such as AMPA receptors (AMPARs) are organized into so-called nanodomains where individual molecules are only transiently trapped. These pre- and postsynaptic nanodomains are characterized by a high density of molecules but differ in their molecular organization an…
Astrocyte sodium signaling and the regulation of neurotransmission.
2015
The transmembrane Na(+) concentration gradient is an important source of energy required not only to enable the generation of action potentials in excitable cells, but also for various transmembrane transporters both in excitable and non-excitable cells, like astrocytes. One of the vital functions of astrocytes in the central nervous system (CNS) is to regulate neurotransmitter concentrations in the extracellular space. Most neurotransmitters in the CNS are removed from the extracellular space by Na(+) -dependent neurotransmitter transporters (NeuTs) expressed both in neurons and astrocytes. Neuronal NeuTs control mainly phasic synaptic transmission, i.e., synaptically induced transient pos…
Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL
2016
AbstractThe function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favo…
Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells
2016
Genetic modification (“transfection”) of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino) ethyl methacrylate (DMAEMA) building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293) and non-adherent (Jurkat, primary human T lymphocytes) mammalian cells. The investigated vectors …
Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study
2018
Single-molecule Forster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between +/- 0.02 and +/- 0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and…
Interference of carbidopa and other catechols with reactions catalyzed by peroxidases
2018
Abstract Background A number of compounds, including ascorbic acid, catecholamines, flavonoids, p-diphenols and hydrazine derivatives have been reported to interfere with peroxidase-based medical diagnostic tests (Trinder reaction) but the mechanisms of these effects have not been fully elucidated. Methods Reactions of bovine myeloperoxidase with o-dianisidine, bovine lactoperoxidase with ABTS and horseradish peroxidase with 4-aminoantipyrine/phenol in the presence of carbidopa, an anti-Parkinsonian drug, and other catechols, including l -dopa, were monitored spectrophotometrically and by measuring hydrogen peroxide consumption. Results Chromophore formation in all three enzyme/substrate sy…
Intracellular fluoride influences TASK mediated currents in human T cells.
2019
The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studie…