Search results for "biosensor"
showing 10 items of 236 documents
Wavelength-Selective Softening of Hydrogel Networks.
2021
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavele…
Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.
2021
Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…
Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures
2011
Abstract Diatoms, single-cell eukaryotic microalgae, are present in nearly every water habitat and their silicon-dioxide (silica)-based cell walls of tens to hundreds of micrometers in size are the most interesting feature to be used in nanotechnology, including biosensing, drug delivery, molecular separation, molecular biology, biomimetics, frustule formation, and electronic, photonic, optical and structural materials. In this review, we present recent progress in applications of diatoms and silica nanomaterials in biosensing, drug and gene delivery, and formation of complex metal nanostructures.
Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods
2013
Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…
Plasmonic Core–Satellite Assemblies as Highly Sensitive Refractive Index Sensors
2015
Highly sensitive and spectrally tunable plasmonic nanostructures are of great demand for applications such as SERS and parallel biosensing. However, there is a lack of such nanostructures for the midvisible spectral regions as most available chemically stable nanostructures offer high sensitivity in the red to far red spectrum. In this work, we report the assembly of highly sensitive nanoparticle structures using a hydroxylamine mediated core–satellite assembly of 20 nm gold nanoparticle satellites onto 60 nm spherical gold cores. The average number of satellites allows tuning the plasmon resonance wavelength from 543 to 575 nm. The core–satellite nanostructures are stable in pH ranges from…
Structural stability of DNA origami nanostructures under application-specific conditions
2018
With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-defin…
Simulation of surface-modified porous silicon photonic crystals for biosensing applications
2012
In this work realistic biosensing structures based on the integration of porous silicon photonic crystals with polymer coating technology are presented. Microcavities and rugate filters are chosen as the photonic crystal configuration. The deposition of a polymer layer on the pore walls of these structures is proposed to improve the selectivity and sensitivity of the sensing function. A complete effective refractive index model including the polymer layer, the target and external effects like silicon oxidation has been developed in order to accurately simulate the structures. It is expected that the proposed structures could be used as low cost, highly integrated and highly sensitive biolog…
Fabrication of an extremely cheap poly(3,4-ethylenedioxythiophene) modified pencil lead electrode for effective hydroquinone sensing
2021
Hydroquinone (HQ) is one of the major deleterious metabolites of benzene in the human body, which has been implicated to cause various human diseases. In order to fabricate a feasible sensor for the accurate detection of HQ, we attempted to electrochemically modify a piece of common 2B pencil lead (PL) with the conductive poly(3,4-ethylenedioxythiophene) or PEDOT film to construct a PEDOT/PL electrode. We then examined the performance of PEDOT/PL in the detection of hydroquinone with different voltammetry methods. Our results have demonstrated that PEDOT film was able to dramatically enhance the electrochemical response of pencil lead electrode to hydroquinone and exhibited a good linear co…
Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.
2018
Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morph…
Novel biosensoric devices based on molecular protein hetero-multilayer films
1997
We have developed a novel concept for the modification of technical surfaces with molecularly well-organized layers of bioorganic components. A molecular construction set has been used to implement this concept which is based on molecularly stratified polyelectrolyte films as a structure decoupling protein layers from solid substrates. Utilizing this technology, one can start from a number of different substrates to obtain the same surface structures, on which protein hetero-multilayer films can be prepared to functionalize the interface for (potentially very different) purposes. We have demonstrated the viability of this concept by constructing a biosensor surface that was characterized by…