Search results for "biosensor"

showing 10 items of 236 documents

Wavelength-Selective Softening of Hydrogel Networks.

2021

Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavele…

Materials scienceLightCell SurvivalNanotechnologyBiocompatible MaterialsCell LinePolyethylene Glycolschemistry.chemical_compoundMiceBimaneTissue engineeringCell AdhesionAnimalsGeneral Materials ScienceNitrobenzenesBioelectronicsDrug CarriersMechanical Engineeringtechnology industry and agricultureHydrogelsChromophoreBridged Bicyclo Compounds HeterocyclicchemistryMechanics of MaterialsDrug deliverySelf-healing hydrogelsBiosensorEthylene glycolAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.

2021

Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…

Materials scienceMechanical EngineeringAptamerDisease progressionTransferabilityMetal NanoparticlesBioengineeringNanotechnologyHydrogels02 engineering and technologyGeneral ChemistryBiosensing TechniquesProstheses and Implants021001 nanoscience & nanotechnologyCondensed Matter PhysicsRatsOptical imagingIntelligent sensorColloidal goldStill faceAnimalsGeneral Materials ScienceGold0210 nano-technologyBiosensorNano letters
researchProduct

Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures

2011

Abstract Diatoms, single-cell eukaryotic microalgae, are present in nearly every water habitat and their silicon-dioxide (silica)-based cell walls of tens to hundreds of micrometers in size are the most interesting feature to be used in nanotechnology, including biosensing, drug delivery, molecular separation, molecular biology, biomimetics, frustule formation, and electronic, photonic, optical and structural materials. In this review, we present recent progress in applications of diatoms and silica nanomaterials in biosensing, drug and gene delivery, and formation of complex metal nanostructures.

Materials scienceNanostructureFrustulebiologyfungiNanotechnologyGene deliverybiology.organism_classificationAnalytical ChemistryNanomaterialsDiatomDrug deliveryBiomimeticsBiosensorSpectroscopyTrAC Trends in Analytical Chemistry
researchProduct

Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods

2013

Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…

Materials scienceNanostructureOXIDE SURFACESNanoparticleMetalchemistry.chemical_compoundSELF-ASSEMBLED MONOLAYERSNANOPARTICLESOrganic chemistrySELF-ASSEMBLED MONOLAYERS; RAY PHOTOELECTRON-SPECTROSCOPY; POLARIZABLE CONTINUUM MODEL; MOLECULAR-ORBITAL METHODS; SENSITIZED SOLAR-CELLS; SURFACE FUNCTIONALIZATION; OXIDE SURFACES; ZINC-OXIDE; NANOPARTICLES; ALUMINUMZINC-OXIDEPhysical and Theoretical ChemistryBifunctionalSelf-assembled monolayerSURFACE FUNCTIONALIZATIONALUMINUMCombinatorial chemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMOLECULAR-ORBITAL METHODSGeneral EnergychemistryPOLARIZABLE CONTINUUM MODELvisual_artRAY PHOTOELECTRON-SPECTROSCOPYvisual_art.visual_art_mediumSurface modificationNanorodSENSITIZED SOLAR-CELLSBiosensorThe Journal of Physical Chemistry C
researchProduct

Plasmonic Core–Satellite Assemblies as Highly Sensitive Refractive Index Sensors

2015

Highly sensitive and spectrally tunable plasmonic nanostructures are of great demand for applications such as SERS and parallel biosensing. However, there is a lack of such nanostructures for the midvisible spectral regions as most available chemically stable nanostructures offer high sensitivity in the red to far red spectrum. In this work, we report the assembly of highly sensitive nanoparticle structures using a hydroxylamine mediated core–satellite assembly of 20 nm gold nanoparticle satellites onto 60 nm spherical gold cores. The average number of satellites allows tuning the plasmon resonance wavelength from 543 to 575 nm. The core–satellite nanostructures are stable in pH ranges from…

Materials scienceNanostructurebusiness.industryNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCore (optical fiber)WavelengthGeneral EnergyOptoelectronicsPhysical and Theoretical ChemistrySurface plasmon resonance0210 nano-technologybusinessBiosensorRefractive indexPlasmonThe Journal of Physical Chemistry C
researchProduct

Structural stability of DNA origami nanostructures under application-specific conditions

2018

With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-defin…

Materials scienceNanostructurelcsh:BiotechnologyBiophysicsNanoparticleNanotechnology02 engineering and technologyReview Article010402 general chemistry01 natural sciencesBiochemistrybiofysiikkananorakenteetStructural Biologylcsh:TP248.13-248.65GeneticsApplication specificDNA origamimateriaalitiedeDNA021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesComputer Science ApplicationsDenaturationStructural stabilityDrug deliveryInorganic materialsDNA origami0210 nano-technologyBiosensorStabilityBiotechnology
researchProduct

Simulation of surface-modified porous silicon photonic crystals for biosensing applications

2012

In this work realistic biosensing structures based on the integration of porous silicon photonic crystals with polymer coating technology are presented. Microcavities and rugate filters are chosen as the photonic crystal configuration. The deposition of a polymer layer on the pore walls of these structures is proposed to improve the selectivity and sensitivity of the sensing function. A complete effective refractive index model including the polymer layer, the target and external effects like silicon oxidation has been developed in order to accurately simulate the structures. It is expected that the proposed structures could be used as low cost, highly integrated and highly sensitive biolog…

Materials sciencePhysics::Optics02 engineering and technologyPorous silicon01 natural sciences010309 optics0103 physical sciencesDeposition (phase transition)Sensitivity (control systems)Electrical and Electronic EngineeringPhotonic crystalchemistry.chemical_classificationbusiness.industrySurface modifiedPolymer021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialschemistryHardware and ArchitectureOptoelectronics0210 nano-technologybusinessLayer (electronics)BiosensorPhotonics and Nanostructures - Fundamentals and Applications
researchProduct

Fabrication of an extremely cheap poly(3,4-ethylenedioxythiophene) modified pencil lead electrode for effective hydroquinone sensing

2021

Hydroquinone (HQ) is one of the major deleterious metabolites of benzene in the human body, which has been implicated to cause various human diseases. In order to fabricate a feasible sensor for the accurate detection of HQ, we attempted to electrochemically modify a piece of common 2B pencil lead (PL) with the conductive poly(3,4-ethylenedioxythiophene) or PEDOT film to construct a PEDOT/PL electrode. We then examined the performance of PEDOT/PL in the detection of hydroquinone with different voltammetry methods. Our results have demonstrated that PEDOT film was able to dramatically enhance the electrochemical response of pencil lead electrode to hydroquinone and exhibited a good linear co…

Materials sciencePolymers and Plastics02 engineering and technology010402 general chemistrybiosensor01 natural sciencesArticlepencil leadlcsh:QD241-441chemistry.chemical_compoundPEDOT:PSSlcsh:Organic chemistrypoly(34-ethylenedioxythiophene)VoltammetryHorizontal scan rateHydroquinonegraphiteGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceshydroquinonechemistryChemical engineeringElectrodeLinear sweep voltammetryCyclic voltammetry0210 nano-technologyPoly(34-ethylenedioxythiophene)
researchProduct

Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.

2018

Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morph…

Materials sciencePrecipitation (chemistry)digestive oral and skin physiologyeducationGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanomaterialsSolventColloidChemical engineeringCopolymerParticleGeneral Materials ScienceLamellar structure0210 nano-technologyBiosensorACS nano
researchProduct

Novel biosensoric devices based on molecular protein hetero-multilayer films

1997

We have developed a novel concept for the modification of technical surfaces with molecularly well-organized layers of bioorganic components. A molecular construction set has been used to implement this concept which is based on molecularly stratified polyelectrolyte films as a structure decoupling protein layers from solid substrates. Utilizing this technology, one can start from a number of different substrates to obtain the same surface structures, on which protein hetero-multilayer films can be prepared to functionalize the interface for (potentially very different) purposes. We have demonstrated the viability of this concept by constructing a biosensor surface that was characterized by…

Materials scienceProtein ConformationBiophysicsProteinsNanotechnologyBiosensing TechniquesOrders of magnitude (numbers)BiochemistryPolyelectrolyteModels StructuralElectrolytesSpectrometry FluorescenceEnergy TransferMonolayerIndicators and ReagentsReactivity (chemistry)AdsorptionLayer (electronics)BiosensorStoichiometryFluorescent DyesProtein BindingAdvances in Biophysics
researchProduct