Search results for "biosynthesi"
showing 10 items of 526 documents
PGDH family genes differentially affect Arabidopsis tolerance to salt stress
2019
The first step in the Phosphorylated Pathway of serine (Ser) Biosynthesis (PPSB) is catalyzed by the enzyme Phosphoglycerate Dehydrogenase (PGDH), coded in Arabidopsis thaliana by three genes. Gene expression analysis indicated that PGDH1 and PGDH2 were induced, while PGDH3 was repressed, by salt-stress. Accordingly, PGDH3 overexpressing plants (Oex PGDH3) were more sensitive to salinity than wild type plants (WT), while plants overexpressing PGDH1 (Oex PGDH1) performed better than WT under salinity conditions. Oex PGDH1 lines displayed lower levels of the salt-stress markers proline and raffinose in roots than WT under salt-stress conditions. Besides, the ratio of oxidized glutathione (GSS…
Dynamics of Monoterpene Formation in Spike Lavender Plants
2017
The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender (Lavandula latifolia Med) on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes …
Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.
2021
[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…
Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways
2020
: In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in &lsquo
The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate d…
2016
The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate de…
The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism
2021
Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…
Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide
2016
Efficient production and secretion of recombinant proteins in mammalian cell lines relies in a combination of genetic, metabolic and culture strategy factors. The present work assesses the influence of two key genetic components of expression vectors (promoter and signal peptide) on protein production and secretion effciency in HEK293 cells expressing eGFP as a reporter protein. Firstly, the strength of 3 different promoters was evaluated using transient expression methods. Flow cytometry analysis revealed that the highest level of intracellular protein expression was found when eGFP was under the control of CMV promoter, being 3-times higher in comparison to the rest of the promoters teste…
Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana
2017
Photorespiration is an essential pathway in photosynthetic organisms and is particularly important to detoxify and recycle 2-phosphoglycolate (2-PG), a by-product of oxygenic photosynthesis. The enzymes that catalyze the reactions in the photorespiratory core cycle and closely associated pathways have been identified; however, open questions remain concerning the metabolic network in which photorespiration is embedded. The amino acid serine represents one of the major intermediates in the photorespiratory pathway and photorespiration is thought to be the major source of serine in plants. The restriction of photorespiration to autotrophic cells raises questions concerning the source of serin…
2014
The Vipp1 protein is essential in cyanobacteria and chloroplasts for the maintenance of photosynthetic function and thylakoid membrane architecture. To investigate its mode of action we generated strains of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 in which Vipp1 was tagged with green fluorescent protein at the C-terminus and expressed from the native chromosomal locus. There was little perturbation of function. Live-cell fluorescence imaging shows dramatic relocalisation of Vipp1 under high light. Under low light, Vipp1 is predominantly dispersed in the cytoplasm with occasional concentrations at the outer periphery of the thylakoid membranes. High light ind…
Mechanisms of Defence to Pathogens : Biochemistry and Physiology
2014
SPE IPM; International audience; Plant defences comprise both pre-existing barriers as well as defences induced upon perception of pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs) or molecules produced from damage as a result of infection (damage-associated molecular patterns (DAMPs)). This chapter focuses on the induced mechanisms of defence. The inducibility of phytoalexin biosynthesis has probably been favoured in the course of evolution by biological constraints such as metabolic costs and functional side-effects associated with chemical defence. Historically, the term ‘hypersensitive’ refers to the rapid and localized cell death induced in…