Search results for "bolometer"
showing 10 items of 24 documents
Radiation-induced defects in antiferroelectric thin films
2003
Abstract Radiation effects on highly oriented antiferroelectric (AFE) PbZrO3 (PZ) films with a thickness of approximately 400 nm are investigated in view of their possible application as a temperature sensitive element in a new bolometer system for fusion devices like ITER. The films were prepared by pulsed laser deposition (PLD). The dielectric constant was measured in the frequency range from 1 to 250 kHz in a stepwise cooling mode (∼2 °C min−1) from 400 °C to room temperature before and after irradiation to a fast neutron fluence of 2×1022 m−2 (E>0.1 MeV). After irradiation, the films were annealed in several steps up to ∼400 °C to remove the radiation-induced defects. The results are di…
Minimizing coherent thermal conductance by controlling the periodicity of two-dimensional phononic crystals
2019
Periodic hole array phononic crystals (PnC) can strongly modify the phonon dispersion relations, and have been shown to influence thermal conductance coherently, especially at low temperatures where scattering is suppressed. One very important parameter influencing this effect is the period of the structure. Here, we measured the sub-Kelvin thermal conductance of nanofabricated PnCs with identical hole filling factors, but three different periodicities, 4, 8, and 16 $\mu$m, using superconducting tunnel junction thermometry. We found that all the measured samples can suppress thermal conductance by an order of magnitude, and have a lower thermal conductance than the previously measured small…
Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles
2015
A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously …
Neutrinoless Double-Electron Capture
2020
Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode ($0\nu2\beta^-$), the latter being still not observed. Double-electron capture (2EC) was not in focus so far because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture ($0\nu2$EC) can experience a resonance enhancement by many orders of magnitude in case the initial and final states are energetically degenerate. In the re…
Two-dimensional phononic thermal conductance in thin membranes in the Casimir limit
2011
We discuss computational analysis of phononic thermal conduction in the suspended membrane geometry, in the experimentally commonly appearing case where heat can flow out radially in two dimensions from a central source. As we are mostly interested in the low-temperature behavior where bulk scattering of phonons becomes irrelevant, we study the limit where all phonon scattering takes place at the membrane surfaces. Moreover, we limit the discussion here to the case where this surface scattering is fully diffusive, the so called Casimir limit. Our analysis shows that in the two-dimensional case, no analytic results are available, in contrast to the well known 1D Casimir limit. Numerical solu…
Hypersensitive tunable Josephson escape sensor for gigahertz astronomy
2020
Sensitive photon detection in the gigahertz band constitutes the cornerstone to study different phenomena in astronomy, such as radio burst sources, galaxy formation, cosmic microwave background, axions, comets, gigahertz-peaked spectrum radio sources and supermassive black holes. Nowadays, state of the art detectors for astrophysics are mainly based on transition edge sensors and kinetic inductance detectors. Overall, most sensible nanobolometers so far are superconducting detectors showing a noise equivalent power (NEP) as low as 2x10-20 W/Hz1/2. Yet, fast thermometry at the nanoscale was demonstrated as well with Josephson junctions through switching current measurements. In general, det…
Four-Color Infrared Bolometer System for One-Meter Telescope
1978
As a part of the collaborative program between the University of Palermo and the Center for Astrophysics (HCO/SAO) a far infrared photometer has been designed, fabricated and tested by the Univsity of Palermo to be used as a focal plane instrument on the Center of Astrophysics/University of Arizona balloon-borne 102 cm telescope (Fazio et a1. 1974).
Microwave nanobolometer based on proximity Josephson junctions
2014
We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential thermal conductance between the detector and its heat bath, obtaining values as low as $5\phantom{\rule{4.pt}{0ex}}\text{fW}/\mathrm{K}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent power of order ${10}^{\ensuremath{-}20}\phantom{\rule{4.pt}{0ex}}\text{W}/\sqrt{\text{Hz}}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. By measuring the dif…
Performance of cryogenic microbolometers and calorimeters with on-chip coolers
2000
Astronomical observations of cosmic sources in the far-infrared and X-ray bands require extreme sensitivity. The most sensitive detectors are cryogenic bolometers and calorimeters operating typically at about 100 mK. The last stage of cooling (from 300 mK to 100 mK) often poses significant difficulties in space-borne experiments, both in system complexity and reliability. We address the possibility of using refrigeration based on normal metal/insulator/superconductor (NIS) tunnel junctions as the last stage cooler for cryogenic thermal detectors. We compare two possible schemes: the direct cooling of the electron gas of the detector with the aid of NIS tunnel junctions and the indirect cool…
Transition-edge microcalorimeters for X-ray space applications
2000
Abstract In an European Space Agency funded research project, our goal is to develop microbolometer technology for X-ray and far-infrared detection for ESA's future scientific missions. We report results on the X-ray calorimeter, which is based on the superconducting transition of the Ti/Au thermometer strip at about 200 mK. Incident X-rays heat up a Bi absorber, deposited on top of the 400 μm ×400 μm thermometer. The temperature rise of the absorber is measured as a change of the thermometer current with a SQUID operating at 1 K.